


Table of Contents

Disclaimer 1
Document 2
Introduction 2
Project Scope 4
Executive Summary 5
Code Quality 6
Documentation 7
Use of Dependencies 8
AS-IS Overview 8
Code Flow Diagram - OGGY.sol 12
Code Flow Diagram - Slither Results Log 12
Audit Findings 21
Conclusion 22
Note For Contract Users 22
Our Methodology 24
Disclaimers 26

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed - upon the

decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of Oggy
Inu

Platform Binance/ Solidity

File 1 OGGY.sol

MD5 hash c3a529a79a35b0ff766068734792b302

SHA256 hash a9121164f3495bfd077e6c7e5143bf0c81208abcc3a84d4c8a738eb4f8d3ccf3

Date 10/04/2023

info@rdauditors.com Page No : 3



Introduction

RD Auditors (Consultant) were contracted by Oggy Inu (Customer) to conduct a

Smart Contract Code Review and Security Analysis. This report represents the

findings of the security assessment of the customer`s smart contract and its code

review conducted between 7th - 10th April 2023.

This contract consists of one file.

info@rdauditors.com Page No : 4



Project Scope

The scope of the project is a smart contract. We have scanned this smart contract

for commonly known and more specific vulnerabilities, below are those

considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 5



Executive Summary
According to the assessment, the customer’s solidity smart contract is now Poorly
Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All issues

were performed by our team, which included the analysis of code functionality,

the manual audit found during automated analysis were manually reviewed and

applicable vulnerabilities are presented in the audit overview section. The general

overview is presented in the AS-IS section and all issues found are located in the

audit overview section.

We found the following;

Total Issues 1

Critical 1

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 6



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on

the blockchain (only once), it is assigned to a specific address and its

properties/methods can be reused many times by other contracts.

The Oggy Inu team has not provided scenario and unit test scripts, which would

help to determine the integrity of the code in an automated way.

Overall, the code is almost commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 7



Documentation

We were given the Oggy Inu code as a link:

https://bscscan.com/address/0x92ed61fb8955cc4e392781cb8b7cd04aadc43d0c#code

The hash of that file is mentioned in the table. As mentioned above, it's

recommended to write comments on smart contract code, so anyone can quickly

understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components, including

helpful details, like the lifetime of the background script.

info@rdauditors.com Page No : 8

https://bscscan.com/address/0x92ed61fb8955cc4e392781cb8b7cd04aadc43d0c#code


Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure.

Those were based on well known industry standard open source projects and

even core code blocks that are written well and systematically.

info@rdauditors.com Page No : 9



AS-IS Overview

OGGY.sol

File And Function Level Report

Contract: OGGY

Inherit: Context, IBEP20, Ownable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 balanceOf public Passed All Passed No Issue Passed

2 allowance public Passed All Passed No Issue Passed

3 approve public Passed All Passed No Issue Passed

4 transferFrom public Passed All Passed No Issue Passed

5 increaseAllow
ance

public Passed All Passed No Issue Passed

6 decreaseAllow
ance

public Passed All Passed No Issue Passed

7 transfer public Passed All Passed No Issue Passed

8 isExcludedFro
mReward

public Passed All Passed No Issue Passed

9 reflectionFro
mToken

public Passed All Passed No Issue Passed

10 EnableTrading external Passed All Passed No Issue Passed

11 updatedeadlin
e

external Passed All Passed No Issue Passed

12 tokenFromRefl
ection

public Passed All Passed No Issue Passed

info@rdauditors.com Page No : 10



13 excludeFromRe
ward

public Passed All Passed No Issue Passed

14 includeInRewa
rd

external Passed All Passed No Issue Passed

15 excludeFromFe
e

public Passed All Passed No Issue Passed

16 includeInFee public Passed All Passed No Issue Passed

17 isExcludedFro
mFee

public Passed All Passed No Issue Passed

18 _reflectRfi private Passed All Passed No Issue Passed

19 _takeLiquidit
y

private Passed All Passed No Issue Passed

20 _takeMarketin
g

private Passed All Passed No Issue Passed

21 _takeOps private Passed All Passed No Issue Passed

22 _takeDev private Passed All Passed No Issue Passed

23 _getValues private Passed All Passed No Issue Passed

24 _getTValues private Passed All Passed No Issue Passed

25 _getRValues1 private Passed All Passed No Issue Passed

26 _getRValues2 private Passed All Passed No Issue Passed

27 _getRate private Passed All Passed No Issue Passed

28 _getCurrentSu
pply

private Passed All Passed No Issue Passed

29 _approve private Passed All Passed No Issue Passed

30 _transfer private Passed All Passed No Issue Passed

31 _tokenTransfe
r

private Passed All Passed No Issue Passed

32 swapAndLiquif
y

private Passed All Passed No Issue Passed

33 addLiquidity private Passed All Passed No Issue Passed

34 swapTokensFor
BNB

private Passed All Passed No Issue Passed

35 bulkExcludeFe
e

external Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



36 updateMarketi
ngWallet

external Passed All Passed No Issue Passed

37 updateDevWall
et

external Passed All Passed No Issue Passed

38 updateOpsWall
et

external Passed All Passed No Issue Passed

39 updateSwapTok
ensAtAmount

external Passed All Passed No Issue Passed

40 updateSwapEna
bled

external Passed All Passed No Issue Passed

41 rescueBNB external Passed All Passed No Issue Passed

42 rescueAnyBEP2
0Tokens

public Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12



Code Flow Diagram - OGGY.sol

info@rdauditors.com Page No : 13



Code Flow Diagram - Slither Results Log

OGGY.sol

info@rdauditors.com Page No : 14



info@rdauditors.com Page No : 15



info@rdauditors.com Page No : 16



Solidity Static Analysis

OGGY.sol

info@rdauditors.com Page No : 17



info@rdauditors.com Page No : 18



info@rdauditors.com Page No : 19



info@rdauditors.com Page No : 20



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 21



Audit Findings

Critical:

1. transferFrom() can lead you to Loss of token as the transfer token happens

before the allowance check so reentrancy attack may be possible. We recommend

adding “_transfer(sender, recipient, amount)” after “_approve(sender,

_msgSender(), currentAllowance - amount)”;

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

info@rdauditors.com Page No : 22



Conclusion

We were given a contract file and have used all possible tests based on the given

object. So it is now ready for mainnet deployment. We have used all the latest

static tools and manual observations to cover maximum possible test cases to

scan everything.

The security state of the reviewed contract is “Poorly Secured”.

info@rdauditors.com Page No : 23



Note For Contract Users

There are several owner only functions. Those can be called by the owner's wallet

only. So, if the owner's wallet is compromised, then it carries the risk of the

contract becoming vulnerable.

Owner has full control over the smart contract. Thus, technical auditing does not

guarantee the project's ethical side.

Please do your due diligence before investing. Our audit report is never an

investment advice.

info@rdauditors.com Page No : 24



Our Methodology

We like to work with a transparent process and make our reviews a collaborative

effort. The goals of our security audits are to improve the quality of systems we

review and aim for sufficient remediation to help protect users. The following is

the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and

random number generators. We also watch for areas where more defensive

programming could reduce the risk of future mistakes and speed up future audits.

Although our primary focus is on the in-scope code, we examine dependency

code and behavior when it is relevant to a particular line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface interaction,

and whitebox penetration testing. We look at the project's web site to get a high

level understanding of what functionality the software under review provides. We

then meet with the developers to gain an appreciation of their vision of the

software. We install and use the relevant software, exploring the user interactions

and roles. While we do this, we brainstorm threat models and attack surfaces. We

read design documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

Documenting Results

info@rdauditors.com Page No : 25



We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in this

document, even though we have not yet verified the feasibility and impact of the

issue. This process is conservative because we document our suspicions early even

if they are later shown to not represent exploitable vulnerabilities. We generally

follow a process of first documenting the suspicion with unresolved questions,

then confirming the issue through code analysis, live experimentation, or

automated tests. Code analysis is the most tentative, and we strive to provide test

code, log captures, or screenshots demonstrating our confirmation. After this we

analyse the feasibility of an attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and finally

we suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the

developers and deployment engineers, and successful mitigation and

remediation is an ongoing collaborative process after we deliver our report, and

before the details are made public.

info@rdauditors.com Page No : 26



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with the

best industry practices at the date of this report, in relation to: cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report, (Source Code); the Source Code compilation, deployment

and functionality (performing the intended functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered

as a sufficient assessment regarding the utility and safety of the code, bugfree

status or any other statements of the contract. While we have done our best in

conducting the analysis and producing this report, it is important to note that you

should not rely on this report only - we recommend proceeding with several

independent audits and a public bug bounty program to ensure security of smart

contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform, its

programming language, and other software related to the smart contract can

have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 27




