


Table of Contents

Disclaimer 2
Documentation 3
Introduction 4
Project Scope 5
Executive Summary 6
Code Quality 6
Documentation 8
Use of Dependencies 9
AS-IS Overview 10
Code Flow Diagram - KungFuInu.sol 12
Code Flow Diagram - Slither Results Log 13
Severity Definitions 18
Audit Findings 19
Conclusion 21
Note For Contract Users 21
Our Methodology 23
Disclaimers 25

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Documentation

Name Smart Contract Code Review and Security Analysis Report of
KungFuInu

Platform BSC / Solidity

File KungFuInu.sol

MD5 hash dd1f59351648dffc1c8349ffff707c07

SHA256 hash 31be465418e4c2101104d5727ae481016436c551b2b89b0b6ea6e8ed5
b0d84e8

Date 08/05/2023

info@rdauditors.com Page No : 3



Introduction

RD Auditors (Consultant) were contracted by KungFu Inu (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

represents the findings of the security assessment of the customer`s smart

contract and its code review conducted between 5 - 8th May, 2023.

This contract consists of one file.

info@rdauditors.com Page No : 4



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 5



Executive Summary
According to the assessment, the customer’s solidity smart contract is now

Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 8

Critical 0

High 0

Medium 0

Low 0

Very Low 8

info@rdauditors.com Page No : 6



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The KungFu Inu team has not provided scenario and unit test scripts, which

helped to determine the integrity of the code in an automated way.

info@rdauditors.com Page No : 7



Documentation

We were given a KungFu Inu smart contract code:

https://bscscan.com/token/0xa1ccd6982c111d3fe5bf348044335ba0fefca688#code

The hash of that code is mentioned above in the table. As mentioned above,

It's recommended to write comments in the smart contract code, so anyone

can quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

info@rdauditors.com Page No : 8

https://bscscan.com/token/0xa1ccd6982c111d3fe5bf348044335ba0fefca688#code


Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 9



AS-IS Overview

KungFuInu.sol

File And Function Level Report

File : KungFuInu.sol

Contract: KungFuInu

Inherit: Context, IERC20, Ownable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 balanceOf public Passed All Passed No Issue Passed

2 transfer public Passed All Passed No Issue Passed

3 allowance public Passed All Passed No Issue Passed

4 approve public Passed All Passed No Issue Passed

5 transferFrom public Passed All Passed No Issue Passed

6 tokenFromRef
lection

private Passed All Passed No Issue Passed

7 _approve private Passed All Passed No Issue Passed

8 _transfer private Passed All Passed No Issue Passed

9 swapTokensFo
rEth

private Passed All Passed No Issue Passed

10 sendETHToFe
e

private Passed All Passed No Issue Passed

11 _tokenTransfe
r

private Passed All Passed No Issue Passed

info@rdauditors.com Page No : 10



12 rescueForeign
Tokens

public Passed All Passed No Issue Passed

13 setNewDevAd
dress

public Passed All Passed No Issue Passed

14 setNewMarke
tingAddress

public Passed All Passed No Issue Passed

15 _transferStand
ard

private Passed All Passed No Issue Passed

16 _takeTeam private Passed All Passed No Issue Passed

17 _reflectFee private Passed All Passed No Issue Passed

18 _getValues public Passed All Passed No Issue Passed

19 _getTValues public Passed All Passed No Issue Passed

20 _getRValues public Passed All Passed No Issue Passed

21 _getRate public Passed All Passed No Issue Passed

22 _getCurrentS
upply

public Passed All Passed No Issue Passed

23 manualswap external Passed All Passed No Issue Passed

24 manualsend external Passed All Passed No Issue Passed

25 setFee public Passed All Passed No Issue Passed

26 toggleSwap public Passed All Passed No Issue Passed

27 excludeMultip
leAccountsFro
mFees

public Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



Code Flow Diagram - KungFuInu.sol

info@rdauditors.com Page No : 12



Code Flow Diagram - Slither Results Log

KungFuInu.sol

info@rdauditors.com Page No : 13



info@rdauditors.com Page No : 14



Solidity Static Analysis

KungFuInu.sol

info@rdauditors.com Page No : 15



info@rdauditors.com Page No : 16



info@rdauditors.com Page No : 17



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 18



Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

(1) SafeMath Library:

SafeMath Library is used in this contract code, but the compiler version is

greater than or equal to 0.8.0, Then it will be not required to use, solidity

automatically handles overflow/underflow.

Resolution: Remove the SafeMath library and use normal math operators, It

will improve code size decrease gas consumption.

(2) swapTokensForEth:

In swapTokensForEth use require to check tokenAmount!=0.

(3) sendETHToFee:

info@rdauditors.com Page No : 19



In sendETHToFee use require to check amount!=0.

(4) rescueForeignTokens:

Use require to check _tokenAddr!=address(0) and _to!=address(0).

(5) setNewDevAddress:

Use require to check dev!=address(0).

(6) setNewMarketingAddress:

Use require to check markt!=address(0).

(7) _transferStandard:

Check all parameters that require validation to stop null or address(0) entry.

(8) excludeMultipleAccountsFromFees:

This function contains a loop, which will consumemore gas.

info@rdauditors.com Page No : 20



Conclusion

We were given a contract code in the form of a bscscan.com link and have

used all possible tests based on the given object. So it is ready to go for

production. We have used all the latest static tools and manual observations

to cover maximum possible test cases to scan everything.

The security state of the reviewed contract is “Secured”.

info@rdauditors.com Page No : 21



Note For Contract Users

Technical auditing does not guarantee the project's ethical side.

info@rdauditors.com Page No : 22



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 23



Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 24



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 25




