RD
AUDITORS

Hugo Inu, Smart Contract,
Code Review and Security
Analysis Report

Customer: Hugo Inu

Prepared on: 2nd June 2023
Platform: Binance

Language: Solidity

rdauditors.com

‘ RD Hugo Inu
' AUDITORS

Table of Contents

Disclaimer 2
Documentation 3
Introduction 4
Project Scope 5
Executive Summary 6
Code Quality 6
Documentation 8
Use of Dependencies 9
AS-IS Overview 10
Code Flow Diagram - Hugo.sol 13
Code Flow Diagram - Slither Results Log 14
Severity Definitions 20
Audit Findings 21
Conclusion 22
Note For Contract Users 22
Our Methodology 24
Disclaimers 26

info@rdauditors.com Page No: 1

g RD Hugo Inu
¥ AUDITORS

Disclaimer

This document may contain confidential information about its systems and
intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No: 2

3 RD Hugo Inu
¥ AUDITORS

Documentation

Name Smart Contract Code Review and Security Analysis Report of Hugo
Inu

Platform Binance/ Solidity

File 1 Hugo.sol

MD5 hash ad08ad2cdObcc98eb36bdaab6ded4f10

SHA256 hash | 968e8de30434fe89067dd2c28327f52282340d9blce4eda25e68de03
3847e5b9

Date 02/06/2023

info@rdauditors.com Page No: 3

Q RD Hugo Inu
¥ AUDITORS

Introduction

RD Auditors (Consultant) were contracted by Hugo Inu (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report represents
the findings of the security assessment of the customer™ s smart contract and

its code review conducted between 1st- 2nd June 2023.

This contract consists of one file.

info@rdauditors.com Page No: 4

Q RD Hugo Inu
AUDITORS

LY

Project Scope

The scope of the project is a smart contract. We have scanned this smart
contract for commonly known and more specific vulnerabilities, below are
those considered (the full list includes but is not limited to):

- Reentrancy

- Timestamp Dependence

- Gas Limit and Loops

- DoS with (Unexpected) Throw

- DoS with Block Gas Limit

- Transaction-Ordering Dependence

- Byte array vulnerabilities

- Style guide violation

- Transfer forwards all gas

- ERC20 API violation

- Malicious libraries

- Compiler version not fixed

- Unchecked external call - Unchecked math

- Unsafe type inference

- Implicit visibility level

info@rdauditors.com Page No: 5

9 RD Hugo Inu
¥ AUDITORS

Executive Summary

According to the assessment, the customer’s solidity smart contract is now
Well-Secured.

You are Here

B insecure Poorly Secured 1 Secure [Well-Secured

Automated checks are with smartDec, Mythril, Slither and remix IDE. All
issues were performed by our team, which included the analysis of code
functionality, the manual audit found during automated analysis were
manually reviewed and applicable vulnerabilities are presented in the audit
overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues

M Critical
High

Medium

B Low

o| O] ol o ol o

M Very Low

info@rdauditors.com Page No: 6

9 RD Hugo Inu
¥ AUDITORS

Code Quality

The libraries within this smart contract are part of a logical algorithm. A library
is a different type of smart contract that contains reusable code. Once
deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The Hugo Inu team has not provided scenario and unit test scripts, which

helped to determine the integrity of the code in an automated way.

info@rdauditors.com Page No: 7

a RD Hugo Inu
2 AUDITORS

Documentation

We were given a Hugo Inu smart contract code in the form of a BSCScan web
link The hash of that code is mentioned above in the table. As mentioned
above, It's recommended to write comments in the smart contract code, so
anyone can quickly understand the programming flow as well as complex

code logic.

Comments are very helpful in understanding the overall architecture of the
protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

info@rdauditors.com Page No: 8

9 RD Hugo Inu
¥ AuDiTORS

Use of Dependencies

As per our observation, the libraries are used in this smart contract
infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No: 9

9 RD Hugo Inu
-4 AUDITORS
AS-IS Overview
Hugo.sol
File And Function Level Report

File : Hugo.sol

Contract: HUGO

Inherit: Context, IBEP20, Ownable

Observation: Passed

Test Report: Passed
Sl Function Type Observation Test Report Conclusion Score
1 name public Passed All Passed No Issue Passed
2 symbol public Passed All Passed No Issue Passed
3 decimals public Passed All Passed No Issue Passed
4 totalSupply public Passed All Passed No Issue Passed
5 balanceOf public Passed All Passed No Issue Passed
6 allowance public Passed All Passed No Issue Passed
7 approve public Passed All Passed No Issue Passed
8 transferFrom public Passed All Passed No Issue Passed
9 increaseAllow public Passed All Passed No Issue Passed

ance
10 decreaseAllow public Passed All Passed No Issue Passed
ance

M transfer public Passed All Passed No Issue Passed
info@rdauditors.com Page No: 10

9 RD Hugo Inu
-4 AUDITORS

12 isExcludedFro public Passed All Passed No Issue Passed
mReward

13 reflectionFro public Passed All Passed No Issue Passed
mToken

14 tokenFromRef public Passed All Passed No Issue Passed
lection

15 excludeFrom public Passed All Passed No Issue Passed
Reward

16 includelnRew external Passed All Passed No Issue Passed
ard

17 excludeFromF public Passed All Passed No Issue Passed
ee

18 includelnFee public Passed All Passed No Issue Passed

19 isExcludedFro public Passed All Passed No Issue Passed
mFee

20 _reflectRfi private Passed All Passed No Issue Passed

21 _takeMarketin private Passed All Passed No Issue Passed
9

22 _getValues private Passed All Passed No Issue Passed

23 _getTValues private Passed All Passed No Issue Passed

24 _getRValues private Passed All Passed No Issue Passed

25 _getRate private Passed All Passed No Issue Passed

26 _getCurrentS private Passed All Passed No Issue Passed
upply

27 _approve private Passed All Passed No Issue Passed

28 _transfer private Passed All Passed No Issue Passed

29 _tokenTransfe private Passed All Passed No Issue Passed
r

30 swapAndLiqui private Passed All Passed No Issue Passed
fy

31 swaplokensFo private Passed All Passed No Issue Passed
rBNB

info@rdauditors.com Page No: 1

g RD Hugo Inu
-4 AUDITORS

32 bulkExcludeF external Passed All Passed No Issue Passed
ee

33 changeFee public Passed All Passed No Issue Passed

34 changeMarke public Passed All Passed No Issue Passed
tingWallet

35 changeSwapA public Passed All Passed No Issue Passed

mount

info@rdauditors.com

Page No: 12

«fQ FRD
-4 AUDITORS

Hugo Inu

Code Flow Diagram - Hugo.sol

(&) Huso

Context
IBEPZO
Cwnable

mnAddress for address

address=>uint256 _rOwned
address==uint256 _tOwned
address==mapping address==uint256 _allowances

address==bool
address=>bool
address _excluded
bool swapping
IRouter router
address pair

s _cecimals

address deadvWallet
address marketingWallet
string _name

string _symbol
Taxes taxes

sExcludedFromFes
_isExcluded

M256 swapTokensAtAmount

TotFeesPaidStruct totFeesPaid

& __constructor__()
Qname)

S symbol()
Qdecimals()
QtotalSupply()

Q. balance ()
Qallowance()
approve()
transferFrom()
increasefllowance()
decreaseAllowance()
transfer()

QreflectionFromToken()
QtokenFromReflection()
excludeFromReward()
includelinRevward()
excludeFromFee()
includelinFee()
QisExcludedFromFee()
_reflectRfi()
_takeMarketing()
a,_getvalues()

o _getTValues()

A _getRValues()
Q,_getRate()
Q_getCurrentSupply()
_approve()

_transfer()
_tokenTransfer()

swap Andliguify()
swapTokensForBMNE()
bulkExcludeF ee()
changeFee()
changeMarketingVWallet()
changeSwapAmount()

000NN NENENENEEEEOOOGOORO0O00Q0000OPQROQ|00000O0CO0000QOOOO0OOODO

QisExcludedFromReward()

(@) 18eP20 |

@ QtotalSupply()
® QbalanceOf() |
@ transfer()
@ Qallowance()

@ approve() |
@ transferFromi()

@ . Cwnable

Context

address _owner

__constructor___()
Cowneri)
renounceOwnership()
_setOwner()

Eood|0

(©) context

< O _msgSender()
< O _msgbatal)

(@) iFactory

@ createPair()

‘ for address

w
N
"
"

<

(@ 1router

@ Qfactory()
& QWWETHD)
@ &addliguidityETH()

@ swapExactTokensForETHSupportingFeeOnTransferTokens()

@ Address

< sencvalue()

info@rdauditors.com

Page No: 13

a RD Hugo Inu
AUDITORS

Y

Code Flow Diagram - Slither Results Log

Hugo.sol

info@rdauditors.com Page No: 14

a RD Hugo Inu
AUDITORS

1ith
h 84 detectors 8 result(found

info@rdauditors.com Page No: 15

Q RD Hugo Inu
¥ AUDITORS

Solidity Static Analysis

Hugo.sol

Block timestamp:

Use of "block.timestamp": "block timestamp" can be influenced by miners to a
certain degree. That means that a miner can "choose" the block.timestamp, to a
certain degree, to change the outcome of a transaction in the mined block.
more

Pos: 509:12:

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to unexpected
behavior if return value is not handled properly. Please use Direct Calls via
specifying the called contract's interface.

more

Pos: 108:27:

Gas & Economy

Gas costs:

Gas requirement of function HUGO.includelnReward is infinite: If the gas
reguirement of a function is higher than the block gas limit, it cannot be executed.
Please avoid loops in your functions or actions that modify large areas of storage
(this includes clearing or copying arrays in storage)

Pos: 294:4:

info@rdauditors.com Page No: 16

Q RD Hugo Inu
¥ AuDiTORS

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 296:8:

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 406:8:

info@rdauditors.com Page No: 17

Q RD Hugo Inu
¥ AUDITORS

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that
depend on storage values, have to be used carefully. Due to the block gas limit,
transactions can only consume a certain amount of gas. The number of iterations
in a loop can grow beyond the block gas limit which can cause the complete
contract to be stalled at a certain point. Additionally, using unbounded loops
incurs in a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.

more

Pos: 514:8:

Miscellaneous

Similar variable names:

HUGO.swapTokensForBNB(uint256) : Variables have very similar names "pair"
and "path". Note: Modifiers are currently not considered by this static analysis.

Pos: 507:12:

No return:
IRouter.addLiquidityETH (address,uint256,uint256,uint256,address,uint256):

Defines a return type but never explicitly returns a value.

Pos: 79:4:

info@rdauditors.com Page No: 18

9 RD Hugo Inu
¥ AuDiTORS

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart
from a bug in your code). Use "require(x)" if x can be false, due to e.g. invalid input
or a failing external component.

mo

Pos: 520:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/100 =

0 instead of 0.1 since the result is an integer again. This does not hold for division
of (only) literal values since those yield rational constants.

Pos: 412:22:

info@rdauditors.com Page No: 19

9 RD Hugo Inu
¥ AUDITORS

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest Lowest level vulnerabilities, code style violations and information
Code Style/ statements cannot affect smart contract execution and can be
Best Practice ignored.

info@rdauditors.com Page No: 20

n:
-4 AUDITORS

Hugo Inu

Audit Findings
Critical:

No critical severity vulnerabilities were found.

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

No low severity vulnerabilities were found.

No very low severity vulnerabilities were found.

info@rdauditors.com

Page No: 21

Q RD Hugo Inu
¥ AUDITORS

Conclusion

We were given a contract code in the form of a Ilink

https./bscscan.com/address/Ox28e3ff085f67163532a843fbf714178770a0210cHcode

and have used all possible tests based on the given object. So it is ready to go
for production. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

The security state of the reviewed contract is “well-secured”.

info@rdauditors.com Page No: 22

https://bscscan.com/address/0x28e3ff085f67163532a843fbf714178770a0210c#code

9 RD Hugo Inu
-4 AUDITORS

Note For Contract Users

Technical auditing does not guarantee the project's ethical side.

info@rdauditors.com Page No: 23

a RD Hugo Inu
AUDITORS

Y

Our Methodology

We like to work with a transparent process and make our reviews a
collaborative effort. The goals of our security audits are to improve the quality
of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.
Manual Code Review

In manually reviewing all of the code, we look for any potential issues with
code logic, error handling, protocol and header parsing, cryptographic errors,
and random number generators. We also watch for areas where more
defensive programming could reduce the risk of future mistakes and speed
up future audits. Although our primary focus is on the in-scope code, we
examine dependency code and behavior when it is relevant to a particular

line of investigation.
Vulnerability Analysis

Our audit techniques included manual code analysis, user interface
interaction, and whitebox penetration testing. We look at the project's web
site to get a high level understanding of what functionality the software
under review provides. We then meet with the developers to gain an
appreciation of their vision of the software. We install and use the relevant
software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design
documentation, review other audit results, search for similar projects,
examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No: 24

a RD Hugo Inu
AUDITORS

Y

Documenting Results

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a
potential issue is discovered, we immediately create an Issue entry for it in
this document, even though we have not yet verified the feasibility and
impact of the issue. This process is conservative because we document our
suspicions early even if they are later shown to not represent exploitable
vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code
analysis, live experimentation, or automated tests. Code analysis is the most
tentative, and we strive to provide test code, log captures, or screenshots
demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.
Suggested Solutions

We search for immediate mitigations that live deployments can take, and
finally we suggest the requirements for remediation engineering for future
releases. The mitigation and remediation recommendations should be
scrutinised by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No: 25

a RD Hugo Inu
AUDITORS

Y

Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with
the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report, (Source Code); the Source Code
compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we
recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.
Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,
its programming language, and other software related to the smart contract
can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No: 26

ol RD
AUDITORS

Email: info@rdauditors.com

Website: www.rdauditors.com

