RD
AUDITORS

Froggy,
Smart Contract,

Code Review and Security
Analysis Report

Customer: Froggy
Prepared on: 3rd Oct, 2023
Platform: Binance
Language: Solidity

rdauditors.com

‘ RD Froggy
' AUDITORS

Table of Contents

Disclaimer 2
Documentation 3
Introduction 4
Project Scope 5
Executive Summary 6
Code Quality 6
Documentation 8
Use of Dependencies 9
AS-IS Overview 10
Code Flow Diagram 12
Code Flow Diagram - Slither Results Log 13
Severity Definitions 20
Audit Findings 21
Conclusion 22
Note For Contract Users 22
Our Methodology 24
Disclaimers 26

info@rdauditors.com

Page No: 1

Q RD Froggy
¥ AUDITORS

Disclaimer

This document may contain confidential information about its systems and
intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
customer or it can be disclosed publicly after all vulnerabilities are fixed - upon

the decision of the customer.

info@rdauditors.com Page No: 2

3 RD Froggy
¥ AUDITORS

Documentation

Name Smart Contract Code Review and Security Analysis Report of
Froggy

Platform Binance/ Solidity

File 1 Froggy.sol

MD5 hash 913dacb6d644b7afflbd079fcdal3ce4d8

SHA256 hash | 3626b73458fc1161710ffef17b84a0acfde8fadb2bc3da7e594cc690a4cc
4664

Date 03/10/2023

info@rdauditors.com Page No: 3

g RD Froggy
¥ AUDITORS

Introduction

RD Auditors (Consultant) were contracted by Froggy (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report represents the
findings of the security assessment of the customer’s smart contract and its

code review conducted between 30th September - 3rd October 2023.

This contract consists of one file.

info@rdauditors.com Page No: 4

g RD Froggy
AUDITORS

L1

Project Scope

The scope of the project is a smart contract. We have scanned this smart
contract for commonly known and more specific vulnerabilities, below are
those considered (the full list includes but is not limited to):

- Reentrancy

- Timestamp Dependence

- Gas Limit and Loops

- DoS with (Unexpected) Throw

- DoS with Block Gas Limit

- Transaction-Ordering Dependence

- Byte array vulnerabilities

- Style guide violation

- Transfer forwards all gas

- ERC20 API violation

- Malicious libraries

- Compiler version not fixed

- Unchecked external call - Unchecked math

- Unsafe type inference

- Implicit visibility level

info@rdauditors.com Page No: 5

b RD Froggy
AUDITORS

£

Executive Summary

According to the assessment, the customer’s solidity smart contract is now
Well-Secured.

You are Here

B insecure Poorly Secured " secure [Well-Secured

Automated checks are with smartDec, Mythril, Slither and remix IDE. All issues
were performed by our team, which included the analysis of code
functionality, the manual audit found during automated analysis were
manually reviewed and applicable vulnerabilities are presented in the audit
overview section. The general overview is presented in the AS-IS section and all

issues found are located in the audit overview section.

We found the following;

Total Issues

B Critical
High

Medium

B Low

Ol N O] O O| N

M Very Low

info@rdauditors.com Page No: 6

b RD Froggy
¥ AUDITORS

Code Quality

The libraries within this smart contract are part of a logical algorithm. A library
is a different type of smart contract that contains reusable code. Once
deployed on the blockchain (only once), it is assigned to a specific address and

its properties/methods can be reused many times by other contracts.

The Froggy team has not provided scenario and unit test scripts, which would

help to determine the integrity of the code in an automated way.

info@rdauditors.com Page No: 7

g RD Froggy
¥ AUDITORS

Documentation

We were given the Froggy smart contract code as an url link:

https://bscscan.com/token/0Ox4C561c1ef2109fc6b230304b114671F72820421BHcode

The hash of that code is mentioned above in the table. As mentioned above,
It's recommended to write comments in the smart contract code, so anyone

can quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the
protocol. It also provides a clear overview of the system components, including

helpful details, like the lifetime of the background script.

info@rdauditors.com Page No: 8

https://bscscan.com/token/0x4C561c1ef2109fc6b230304b114671F72820421B#code

b RD Froggy
¥ AuDiTORS

Use of Dependencies

As per our observation, the libraries are used in this smart contract
infrastructure. Those were based on well known industry standard open
source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No: 9

b RD Froggy
-4 AUDITORS
AS-IS Overview
Froggy
File And Function Level Report
File: Froggy.sol
Contract: Froggy
Inherit: Ownable, ERC20
Observation: Passed
Test Report: Passed
Sl Function Type Observation Test Report Conclusion Score
1 isContract internal Passed All Passed No Issue Passed
2 getRouterAdd public Passed All Passed No Issue Passed
ress
3 claimStuckTo external Passed All Passed No Issue Passed
kens
4 setBuyTax external Passed All Passed No Issue Passed
5 setSellTax external Passed All Passed No Issue Passed
6 setTransferTax external Passed All Passed No Issue Passed
7 setMarketing external Passed All Passed No Issue Passed
Wallet
8 setSwaploken external Passed All Passed No Issue Passed
sAtAmount
9 toggleSwapB external Passed All Passed No Issue Passed
ack
info@rdauditors.com Page No: 10

Q RD Froggy
-4 AUDITORS

10 setAutomated external Passed All Passed No Issue Passed
MarketMaker
Pair

N isAutomated external Passed All Passed No Issue Passed
MarketMaker
Pair

12 setExcludeFro external Passed All Passed No Issue Passed
mFees

13 isExcludedFro external Passed All Passed No Issue Passed
mFees

14 _transfer internal Passed All Passed No Issue Passed

15 swapBack internal Passed All Passed No Issue Passed

16 manualSwap external Passed All Passed No Issue Passed

Back

info@rdauditors.com

Page No: T

«§ FD
-4 AUDITORS

Froggy

Code Flow Diagram

Froggy.sol

@ IUniswapV2Routero2

IUniswapVZRouterd 1

THFor Token:

® removeLiguidityETHSupportingFeeOnTransfer Tokens()

® removeLiguidityETHWithPermitSupportingFeeOnTransfer Tokens()
© swapExactTokensFor TokensSupportingFeeCnTransfer Tokens()
e rtingFeeOnTransferTokens()
© swapExactTokensForETHSupportingF eeOnTransferTokens()

(@ 1uniswapv2Routerot

Qfactory()

QUWNVETHC)

adLiguicity ()

@ acdLiquidity ETHO
remaveLiguicity ()
removeLicuidityETHC)
removeLiguidity\ithPermit()
removeLiguidity ETHWIthPermit()
swapExactTokensForTokens()
swapTokensForExactTokens()
& swapExactETHFor Tokens()
swapTokensForExactETH()
swapExactTokensForETHO)

@ swapETHForExactTokens()
Auquote()

AugetAmountout()
Qgetamaounting
QgetAmourtsOut)
AgetAmountsingy

0000000000000000000

@ IUniswapV 2Factory,

QfeeTol)
QfeeToSetter()
QgetPair()
QallPairs()
QallPairsLength()
createPair()
setFesTo()
setFesToSetter()

00000000

(R) sarecrczo

mnAddress for address

“» safeTransfer()

<> safeTransferFrem()

< safeApprove()

< safeincreasefllowance()
< safeDecreasefllowance()
< forceApprovel)

< safePermit()

= _callOptionalReturni)

m _callOptionalReturnBool()

for address

(&) Adgaress

& QisCortract()

< sendvalue()

< functionCall(y

< functionCallith'/alue()

@ QfunctionStaticCall()

“ functionDelegateCall{)

< QuerifyCalResuttFromTarget()
& QerifyCallResult()

= Q_revert(

(€) Frogay

ownable
ERGZ0

vSare ERCZ0 for IERCZ0

UInt256 marketing TaxBuy
556 marketingTaxSell

UINt256 marketingTax Transfer

uINt256 denominator

address marketingvWallet

bool swapping

UINt256 swapTokensAtAmourt

bool isSwapBackEnabled
IUniswap2Routert2 uniswap 2Router

address uniswap2Pair

(@ 1erczopermit

addr _isAL
address=>bool _isExcludedFromFees

&__constructor__(}
QisContract()

AgetRouter Address()
claimStuckTokens()

setBuyTax()

setSellTax()

setTransfer Tax()
setMarketingvWallet()
setSwapTokensAtAmount()
togoleSwapBack()
setAutomatediarketMakerPair()
QisAutomatediarketiMakerPair()
setExcludeFromFees()
AisExcludedFromFees()
_transfer()

swapBack()

manualSwapBack()

00000000000000000(000000CO00000

. \,

,'for IERC20
’

@ permit()
® Qnonces()
@ QDOMAIN_SEPARATOR()

Contesxt

© ERGC20
IERC20

IER C20Metadata

address==uint256 _balances
address=>mapping address=>uint256 _allowances
UNt256 _totalSupkly

string _name

string _symbol

__constructor__()
Qnamer)

Asymbol()
Adecimals()
AtotalSupply()
AbalanceOf()
transfer()
Qallowance()

@ approve()

© transferFrom()

© increasesllowance()
@ decreaseAllowance()
< _transfer()

90000000 00000

< approve()

< _spendAllowance()

< _beforeTokenTransfer()
“» _afterTokenTransfer()

| o,
| | @ rerczometagata
| 1ERC20

.
@ Cwnahble

Contesxdt

O address _owner

© _ _constructor__()
© Sowner()

@ Q_checkOwner()

= renounceCwnership(y
® transferOwnership()
< _transferOwnership()

o
(@) context

® Sname()
® Qsymbol()
| ® Odecimals(y

(@) ierczo

QtaotalSupply()
QbalanceOf()
transfer()
Qallowance()
approve()
transferFrom()

000000

< a_msgSender()
< a_msgDatal)

info@rdauditors.com

Page No: 12

b RD Froggy
AUDITORS

Y

Code Flow Diagram - Slither Results Log

Froggy.sol

info@rdauditors.com Page No: 13

a RD Froggy
AUDITORS

Y

info@rdauditors.com Page No: 14

Q RD Froggy
¥ AuDiTORS

Solidity Static Analysis
Froggy.sol

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance
(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.
invalid input or a failing external component.

more

Pos: 750:8:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in Froggy.(): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently
not considered by this static analysis.

more

Pos: 889:4:

Block timestamp:

Use of "block timestamp": "block timestamp" can be influenced by miners to
a certain degree. That means that a miner can "choose" the block.timestamp,
to a certain degree, to change the outcome of a transaction in the mined
block.

more

Pos: 1141:24:

info@rdauditors.com Page No: 15

Q RD Froggy
¥ AuDiTORS

Low level calls:

Use of "call": should be avoided whenever possible. It can lead to
unexpected behavior if return value is not handled properly. Please use
Direct Calls via specifying the called contract's interface.

more

Pos: 584:50:

Gas costs:

Gas requirement of function Froggy.denominator is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 860:4:

Gas costs:

Gas requirement of function Froggy.claimStuckTokens is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large
areas of storage (this includes clearing or copying arrays in storage)

Pos: 941:4:

info@rdauditors.com Page No: 16

Q RD Froggy
¥ AuDiTORS

Gas costs:

Gas requirement of function Froggy.setExcludeFromFees is infinite: If the gas
requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 1053:4:

Gas costs:

Gas requirement of function Froggy.manualSwapBack is infinite: If the gas

requirement of a function is higher than the block gas limit, it cannot be
executed. Please avoid loops in your functions or actions that modify large

areas of storage (this includes clearing or copying arrays in storage)
Pos: 1149:4:

Constant/View/Pure functions:

ERC20._afterTokenTransfer(address,address,uint256) : Potentially should be
constant/view/pure but is not. Note: Modifiers are currently not considered
by this static analysis.

more

Pos: 802:4:

info@rdauditors.com Page No: 17

Q RD Froggy
¥ AuDiTORS

Similar variable names:

Froggy.claimStuckTokens(address) : Variables have very similar names
"_balances" and "balance". Note: Modifiers are currently not considered by

this static analysis.
Pos: 949:8:

No return:

IERC20transferFrom(address,address,uint256): Defines a return type but
never explicitly returns a value.
Pos: 448:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance

(apart from a bug in your code). Use "require(x)" if x can be false, due to e.g.

invalid input or a failing external component.
mot

Pos: 750:8:

info@rdauditors.com Page No: 18

b RD Froggy
¥ AuDiTORS

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance

(apart from a bug in your code). Use "require(x)" if x can be false, due to eg.

invalid input or a failing external component.
more

Pos: 1152:8:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 /
100 = 0O instead of 0.1 since the result is an integer again. This does not hold

for division of (only) literal values since those yield rational constants.

Pos: 1106:38:

info@rdauditors.com Page No: 19

b RD Froggy
¥ AUDITORS

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest Lowest level vulnerabilities, code style violations and information
Code Style/ statements cannot affect smart contract execution and can be
Best Practice ignored.

info@rdauditors.com Page No: 20

b RD Froggy
¥ AUDITORS

Audit Findings
Critical:

No critical severity vulnerabilities were found.
High:

No high severity vulnerabilities were found.
Medium:

No medium severity vulnerabilities were found.

1. No event for claimStuckTokens() function.

function _transfer(
address from,
address to,
uint256 amount
) internal override {
require(from != address(®), "ERC28: transfer from the zero address™);

require(to != address(@), "CERC20: transfer to the zero address™);

if (amount a) {
super.| transfen(from, to, @);
return;

2. Transferring “0" consumes unnecessary gas.

No very low severity vulnerabilities were found.

info@rdauditors.com Page No: 21

b RD Froggy
¥ AuniTors

Conclusion

We were given a contract code in the form of a link and have used all possible
tests based on the given object. We have used all the latest static tools and
manual observations to cover maximum possible test cases to scan

everything.

The security state of the reviewed contract is “Well-secured”.

info@rdauditors.com Page No: 22

9 RD Froggy
-4 AUDITORS

Note For Contract Users

Technical auditing does not guarantee the project's ethical side.

info@rdauditors.com Page No: 23

b RD Froggy
AUDITORS

Y

Our Methodology

We like to work with a transparent process and make our reviews a
collaborative effort. The goals of our security audits are to improve the quality
of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.
Manual Code Review

In manually reviewing all of the code, we look for any potential issues with
code logic, error handling, protocol and header parsing, cryptographic errors,
and random number generators. We also watch for areas where more
defensive programming could reduce the risk of future mistakes and speed up
future audits. Although our primary focus is on the in-scope code, we examine
dependency code and behavior when it is relevant to a particular line of

investigation.
Vulnerability Analysis

Our audit techniques included manual code analysis, user interface
interaction, and whitebox penetration testing. We look at the project's web site
to get a high level understanding of what functionality the software under
review provides. We then meet with the developers to gain an appreciation of
their vision of the software. We install and use the relevant software, exploring
the user interactions and roles. While we do this, we brainstorm threat models
and attack surfaces. We read design documentation, review other audit
results, search for similar projects, examine source code dependencies, skim
open issue tickets, and generally investigate details other than the

implementation.

info@rdauditors.com Page No: 24

b RD Froggy
AUDITORS

Y

Documenting Results

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a
potential issue is discovered, we immediately create an Issue entry for it in this
document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions
early even if they are later shown to not represent exploitable vulnerabilities.
We generally follow a process of first documenting the suspicion with
unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and
we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyse the feasibility of an attack in a live system.
Suggested Solutions

We search for immediate mitigations that live deployments can take, and
finally we suggest the requirements for remediation engineering for future
releases. The mitigation and remediation recommendations should be
scrutinised by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No: 25

b RD Froggy
AUDITORS

Y

Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with
the best industry practices at the date of this report, in relation to:
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report, (Source Code); the Source Code
compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we
recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.
Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,
its programming language, and other software related to the smart contract
can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No: 26

ol RD
AUDITORS

Email: info@rdauditors.com

Website: www.rdauditors.com

