


Table of Contents

Disclaimer 1
Document 2
Introduction 3
Project Scope 5
Executive Summary 6
Code Quality 7
Documentation 8
Use of Dependencies 9
AS-IS Overview 9
Code Flow Diagram - Card.sol 13
Pool.sol 13
Trains.sol 13
Code Flow Diagram - Slither Results Log 13
Audit Findings 33
Discussion 33
Conclusion 34
Note For Contract Users 35
Our Methodology 38
Disclaimers 41

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of Trains

Platform Binance/ Solidity

File Card.sol

MD5 hash 56f9d0ac48c0d16d07c16633dd2eb29f

SHA256 hash f5f63426b6e22f24e8b80fa419cb06e9602e1697899ca50fca0f17dd78f
8f3db

File Mine.sol

MD5 hash 1fc3918b71e1e1ca7a893b25ca7c3a34

SHA256 hash adae385ed178b6bf8a9105b3186079d6fe163c4b8145f2380e71e1ea9cc
7f0ea

File Pool.sol

MD5 hash 49e4e0fdef008744966e4a133a7e1c25

SHA256 hash 7dd9e12a4e882857bac6b2e074974f44ab8147adb12671d1ecd3d7eff0
458e5a

File Trains.sol

info@rdauditors.com Page No : 3



MD5 hash dd6e21d943e1905fe3697f2328d9d587

SHA256 hash 68b68bee1ec6ded4e0f14a70b2a7f16146d61d5f934d2aac57a157d9d2
b60d55

Date 27/10/2023

info@rdauditors.com Page No : 4



Introduction

RD Auditors (Consultant) were contracted by trains (Customer) to conduct a

Smart Contract Code Review and Security Analysis. This report represents the

findings of the security assessment of the customer’s smart contract and its

code review conducted between 24th - 27th October 2023.

This contract consists of four files.

info@rdauditors.com Page No : 5



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 6



Executive Summary
According to the assessment, the customer’s solidity smart contract is now
well-Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 0

Critical 0

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 7



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The Trains team has not provided scenario and unit test scripts, which would

help to determine the integrity of the code in an automated way.

Overall, the code is not commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 8



Documentation

We were given the Trains code as a github link:

https://github.com/trainsAdmin/trains-contract/tree/main/contracts

The hash of that file is mentioned in the table. As mentioned above, it's

recommended to write comments on smart contract code, so anyone can

quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 9



AS-IS Overview

Trains .sol

File And Function Level Report

Contract: Card

Inherit: AccessControl, Pausable, ERC1155, ERC1155Burnable,

ERC1155Supply, ERC1155UPIStorage

Import: AccessControl, Pausable, ERC1155, ERC1155Burnable,

ERC1155Supply, ERC1155UPIStorage

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 SupportsInter
face

read Passed All Passed No Issue Passed

2 Uri read Passed All Passed No Issue Passed

3 SetBaseURI onlyRole Passed All Passed No Issue Passed

4 pause onlyRole Passed All Passed No Issue Passed

5 Unpause onlyRole Passed All Passed No Issue Passed

6 mint onlyRole Passed All Passed No Issue Passed

7 mintBatch onlyRole Passed All Passed No Issue Passed

8 beforeTokenTr
ansfer

internal Passed All Passed No Issue Passed

info@rdauditors.com Page No : 10



Contract: Mine

Inherit: AccessControlUpgradeable, ReentrancyGuardUpgradeable,

ERC1155HolderUpgradeable

Import: ReentrancyGuardUpgradeable, AccessControlUpgradeable,

IERC1155Upgradeable, ERC1155HolderUpgradeable,

SafeERC20Upgradeable, CountersUpgradeable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 initialize write Passed All Passed No Issue Passed

2 SupportsInterfa
ce

read Passed All Passed No Issue Passed

3 SetPayee onlyRole Passed All Passed No Issue Passed

4 SetWithdrawAu
ditLimit

onlyRole Passed All Passed No Issue Passed

5 getWithdrawLis
t

onlyRole Passed All Passed No Issue Passed

6 rewardPerHash
Rate

read Passed All Passed No Issue Passed

7 earned read Passed All Passed No Issue Passed

8 Stake write Passed All Passed No Issue Passed

9 UnStake write Passed All Passed No Issue Passed

10 Claim external Passed All Passed No Issue Passed

11 auditWithdraw onlyRole Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



Contract: Pool

Inherit: AccessControlUpgradeable, ReentrancyGuardUpgradeable

Import: AccessControlUpgradeable, IERC20Upgradeable,

ReentrancyGuardUpgradeable, ReentrancyGuard,

safeERC20Upgradeable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 initialize write Passed All Passed No Issue Passed

2 setPayee write Passed All Passed No Issue Passed

3 setMinStaking write Passed All Passed No Issue Passed

4 setMaxStaking onlyOper
ator

Passed All Passed No Issue Passed

5 setTotalSupply onlyOper
ator

Passed All Passed No Issue Passed

6 hindSuperior onlyOper
ator

Passed All Passed No Issue Passed

7 depositToken write Passed All Passed No Issue Passed

8 depositNFT write Passed All Passed No Issue Passed

9 _deposit write Passed All Passed No Issue Passed

10 _checkUserDepo
sit

read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12



Contract: Trains

Inherit: AccessControl, Pausable, ERC20, ERC20Burnable

Import: AccessControl, Pausable, ERC20, ERC20Burnable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 Pause write Passed All Passed No Issue Passed

2 Unpause write Passed All Passed No Issue Passed

3 mint write Passed All Passed No Issue Passed

4 _beforeTokenTr
ansfer

write Passed All Passed No Issue Passed

info@rdauditors.com Page No : 13



Code Flow Diagram - Card.sol

File: Mine.sol

info@rdauditors.com Page No : 14



info@rdauditors.com Page No : 15



Pool.sol

info@rdauditors.com Page No : 16



Trains.sol

info@rdauditors.com Page No : 17



Code Flow Diagram - Slither Results Log

Card.sol

info@rdauditors.com Page No : 18



Mine.sol

info@rdauditors.com Page No : 19



info@rdauditors.com Page No : 20



info@rdauditors.com Page No : 21



info@rdauditors.com Page No : 22



Pool.sol

info@rdauditors.com Page No : 23



info@rdauditors.com Page No : 24



Trains.sol

info@rdauditors.com Page No : 25



info@rdauditors.com Page No : 26



Solidity Static Analysis

Card.sol

info@rdauditors.com Page No : 27



Mine.sol

info@rdauditors.com Page No : 28



info@rdauditors.com Page No : 29



Pool.sol

info@rdauditors.com Page No : 30



info@rdauditors.com Page No : 31



Trains.sol

info@rdauditors.com Page No : 32



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 33



Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

info@rdauditors.com Page No : 34



Discussion

Version Pragma: The Solidity version pragma is set to ^0.8.19. The caret (^)

symbol should be used with caution, as it allows the compiler to use any

version greater than 0.8.19. To minimize the risk of breaking changes in future

compiler versions, consider specifying an exact version

info@rdauditors.com Page No : 35



Conclusion

We were given a contract file and have used all possible tests based on the

given object. So it is now ready for mainnet deployment. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

The security state of the reviewed contract is “well-Secured”.

info@rdauditors.com Page No : 36



Note For Contract Users

There are several administrator functions. Those can be called by the

administrator's wallet only. So, if the administrator's wallet is compromised,

then it carries the risk of the contract becoming vulnerable.

SetBaseURI: The ‘setBaseURI’ function can only be called by an account that

has the DEFAULT_ADMIN_ROLE. If the sender of the transaction does not

have that role, the function call will fail with an error.

Pause: The ‘pause’ function is restricted to be called only by an account with

the DEFAULT_ADMIN_ROLE. This ensures that only an authorized

administrator can pause the contract.

UnPause: The ‘unpause’ function is also restricted to be called only by an

account with the DEFAULT_ADMIN_ROLE, ensuring that only authorized

administrators can unpause the contract.

Mint: This ensures that only accounts with the ‘MINTER_ROLE’ can call the

mint function.

MintBatch: The function is restricted by the onlyRole(MINTER_ROLE) modifier,

which ensures that only accounts with the MINTER_ROLE can call this

function. The MINTER_ROLE is a role defined in the contract, typically used to

control who has permission to mint new tokens.

info@rdauditors.com Page No : 37



SetPayee: The ‘setPayee’ function is restricted to the admin. In this function,

only the account with the DEFAULT_ADMIN_ROLE can change the payee

address.

SetWithdrawAudit: This function is restricted by the onlyRole

(DEFAULT_ADMIN_ROLE) modifier. This means that only the account that

was initially granted the DEFAULT_ADMIN_ROLE (the admin) can call these

functions and change certain contract settings.

auditWithdraw: The auditWithdraw function is restricted to be called only by

accounts with the OPERATOR role. This role is established in the contract and

is meant to represent operators or administrators with the authority to audit

withdrawal requests.the auditWithdraw function allows authorized operators

to review and approve or deny withdrawal requests, transferring the funds to

the user or returning them to the user's reward balance based on the audit

outcome.

SetMinStaking/SetMaxStaking/SetTotalSupply: setMinStaking, setMaxStaking,

and setTotalSupply functions are administrative functions that allow

authorized administrators to configure parameters related to staking and

total token supply in the contract. These functions are often used to control

and adjust the contract's behavior and settings as needed.

info@rdauditors.com Page No : 38



administrator has full control over the smart contract. Thus, technical auditing

does not guarantee the project's ethical side.

Please do your due diligence before investing. Our audit report is never an

investment advice.

info@rdauditors.com Page No : 39



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 40



Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 41



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 42




