


Table of Contents

Disclaimer 3
Document 4
Introduction 5
Project Scope 6
Executive Summary 7
Code Quality 7
Documentation 9
Use of Dependencies 9
AS-IS Overview 10
Code Flow Diagram - Droggy 13
Interaction Diagram 14
Inheritance Diagram 15
Code Flow Diagram - Slither Results Log 16
Audit Findings 20
Conclusion 22
Note For Contract Users 22
Our Methodology 24
Disclaimers 27

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of
Droggy

Platform Binance Smart Chain/ Solidity

File Droggy.sol

MD5 hash b32245b80a9fb6ce00b42d6cd1dc5b2b

SHA256 hash e3e67d7bfc059685c0a1bf8a0b787be587c217a3609702db0af6612f22f
4a71a

Date 13/12/2023

info@rdauditors.com Page No : 3



Introduction

RD Auditors (Consultant) were contracted by Droggy (Customer) to conduct a

Smart Contract Code Review and Security Analysis. This report represents the

findings of the security assessment of the customer’s smart contract and its

code review conducted between 12th - 14th December 2023.

This contract consists of one file.

info@rdauditors.com Page No : 4



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 5



Executive Summary
According to the assessment, the customer’s solidity smart contract is now
Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 0

Critical 0

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 6



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The Droggy team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Overall, the code is not commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 7



Documentation

We were given the Droggy code as a link:

https://bscscan.com/address/0x556ee4EaB4fbF6DDc4C05285966FB839F424c8a8#code

The hash of that file is mentioned in the table. As mentioned above, it's

recommended to write comments on smart contract code, so anyone can

quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 8



AS-IS Overview

Droggy.sol

File And Function Level Report

Contract: ERC20

Inherit: Context, IERC20, IERC20Metadata

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 name read Passed All Passed No Issue Passed

2 symbol read Passed All Passed No Issue Passed

3 decimals read Passed All Passed No Issue Passed

4 totalSupply read Passed All Passed No Issue Passed

5 balanceOf read Passed All Passed No Issue Passed

6 transfer write Passed All Passed No Issue Passed

7 allowance read Passed All Passed No Issue Passed

8 approve write Passed All Passed No Issue Passed

9 transferFrom write Passed All Passed No Issue Passed

10 IncreaseAllow
ance

write Passed All Passed No Issue Passed

11 decreaseAllow
ance

write Passed All Passed No Issue Passed

12 _transfer internal Passed All Passed No Issue Passed

13 _mint internal Passed All Passed No Issue Passed

14 _burn internal Passed All Passed No Issue Passed

info@rdauditors.com Page No : 9



15 _approve internal Passed All Passed No Issue Passed

16 _spendAllowa
nce

internal Passed All Passed No Issue Passed

17 _beforeTokenT
ransfer

internal Passed All Passed No Issue Passed

18 _afterTokentra
nsfer

internal Passed All Passed No Issue Passed

Contract: Ownable

Inherit: Context

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 Owner read Passed All Passed No Issue Passed

2 _CheckOwner internal Passed All Passed No Issue Passed

3 renounceOwn
ership

onlyOwner Passed All Passed No Issue Passed

4 transferOwner
ship

onlyOwner Passed All Passed No Issue Passed

Contract: Droggy

Inherit: Ownable, ERC20

Observation: Passed

Test Report: Passed

info@rdauditors.com Page No : 10



Sl. Function Type Observation Test Report Conclusion Score

1 isContract read Passed All Passed No Issue Passed

2 getRouterAdd
ress

read Passed All Passed No Issue Passed

3 ClaimStuckTo
kens

OnlyOwner Passed All Passed No Issue Passed

4 SetBuyTax OnlyOwner Passed All Passed No Issue Passed

5 SetSellTax OnlyOwner Passed All Passed No Issue Passed

6 SetTransferTax OnlyOwner Passed All Passed No Issue Passed

7 SetMarketing
Wallet

OnlyOwner Passed All Passed No Issue Passed

8 SetSwapToke
nsAtAmount

OnlyOwner Passed All Passed No Issue Passed

9 toggleSwapB
ack

OnlyOwner Passed All Passed No Issue Passed

10 SetAutomate
dMarketMake
rPair

OnlyOwner Passed All Passed No Issue Passed

11 isAutomated
MarketMaker
Pair

read Passed All Passed No Issue Passed

12 SetExcludeFro
mFees

OnlyOwner Passed All Passed No Issue Passed

13 isExcludeFro
mFees

read Passed All Passed No Issue Passed

14 _transfer internal Passed All Passed No Issue Passed

15 SwapBack internal Passed All Passed No Issue Passed

16 manualSwap
Back

external Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



Code Flow Diagram - Droggy

info@rdauditors.com Page No : 12



Interaction Diagram

info@rdauditors.com Page No : 13



Inheritance Diagram

info@rdauditors.com Page No : 14



Code Flow Diagram - Slither Results Log

info@rdauditors.com Page No : 15



Solidity Static Analysis

info@rdauditors.com Page No : 16



info@rdauditors.com Page No : 17



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 18



Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

Discussion

1. Overpowered owners: The contracts are using 11 functions that can only be

called by the owners. Giving too many privileges to the owners via critical

functions might put the user's funds at risk if the owners are compromised or

if a rug-pulling attack takes place.

2. Users with token balance more than 5% - some addresses contain more

than 5% of circulating token supply.

0x34533e98cae1276bf150e14f19acbf087a2e5672 13.02%

0xa0387adba7636722abe119cbf9220ce0b9938b0b 8.084%

info@rdauditors.com Page No : 19



Token distribution plays an important role when controlling the price of an

asset.

3. ERC20 race condition

The contract is vulnerable to ERC-20 approve Race condition vulnerability.

ERC-20 approve function is vulnerable to a frontrunning attack which can be

exploited by the token receiver to withdraw more tokens than the allowance.

Proper mitigation steps should be implemented to prevent such

vulnerabilities.

4. Hardcoded addresses: The contract was hardcoding addresses in the code.

This may represent that those parameters can never be changed or updated

unless it’s a proxy contract. It is recommended to go through the code to

knowmore about these hardcoded values and its use.

info@rdauditors.com Page No : 20



Conclusion

We were given a contract file and have used all possible tests based on the

given object. so it is ready for mainnet deployment. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

The security state of the reviewed contract is “Secured”.

info@rdauditors.com Page No : 21



Note For Contract Users

ClaimStuckTokens: This function allows the owner to claim either native Ether

or ERC-20 tokens that are accidentally sent to the contract. If the specified

token address is the zero address, it transfers Ether; otherwise, it transfers the

ERC-20 token balance to the owner. The owner can use this function to

recover any funds that might be stuck in the contract.

SetBuyTax: This function allows the owner to update the buy tax for the

contract. It performs checks to ensure the new value is different from the

current one and within a specified limit. If the conditions are met, it updates

the buy tax and emits an event to log the change.

SetSellTax: This function allows the owner to update the sell tax for the

contract. It performs checks to ensure the new value is different from the

current one and within a specified limit. If the conditions are met, it updates

the sell tax and emits an event to log the change.

SetTransferTax: This function allows the owner to update the transfer tax for

the contract. It performs checks to ensure the new value is different from the

current one and within a specified limit. If the conditions are met, it updates

the transfer tax and emits an event to log the change.

SetMarketingWallet: This function allows the owner to update the marketing

wallet address for the contract. It performs checks to ensure the new address

is different from the current one, not the zero address, and not a contract. If

the conditions are met, it updates the marketing wallet address and emits an

event to log the change.

info@rdauditors.com Page No : 22



SetSwapTokensAtAmount: This function allows the owner to update the

threshold at which a token swap operation will be triggered. It performs

checks to ensure the new value is different from the current one and meets a

minimum threshold. If the conditions are met, it updates

swapTokensAtAmount

ToggleSwapBack: function allows the owner to toggle the status of the swap

back feature. It checks if the new status is different from the current one, and

if so, it updates isSwapBackEnabled and emits an event to log the change.

This can be useful for enabling or disabling certain functionalities in the

contract, such as automatic token swaps.

SetAutomatedMarketMakerPair: This function allows the owner to set the

status of an automated market maker pair. It performs checks to ensure that

unnecessary state changes are avoided and prevents the owner from setting

the status for the Uniswap V2 pair directly. If the conditions are met, it

updates the status and emits an event to log the change

SetExcludeFromFee: This function allows the owner to set the exclusion

status from fees for a specific account. It performs checks to ensure that

unnecessary state changes are avoided. If the conditions are met, it updates

the exclusion status and emits an event to log the change.

info@rdauditors.com Page No : 23



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 24



Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 25



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 26




