


Table of Contents

Disclaimer 2
Document 3
Introduction 4
Project Scope 5
Executive Summary 6
Code Quality 6
Documentation 8
Use of Dependencies 8
AS-IS Overview 9
Code Flow Diagram - Grok Inu 16
Interaction Diagram 18
Inheritance Diagram 19
Code Flow Diagram - Slither Results Log 20
Audit Findings 27
Conclusion 32
Note For Contract Users 32
Our Methodology 40
Disclaimers 42

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of Grok
Inu

Platform Binance Smart Chain/ Solidity

File GrokInu.sol

MD5 hash 4ee498bf4152089aeffeefb8a14548b7

SHA256 hash 6f002c042ea8cdfef9de941b5c840d11c5bc46de196fb60d93f4cbb019
4f178f

Date 28/12/2023

info@rdauditors.com Page No : 3



Introduction

RD Auditors (Consultant) were contracted by GrokInu (Customer) to conduct

a Smart Contract Code Review and Security Analysis. This report represents

the findings of the security assessment of the customer’s smart contract and

its code review conducted between 23rd - 28th December 2023.

This contract consists of one file.

info@rdauditors.com Page No : 4



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 5



Executive Summary
According to the assessment, the customer’s solidity smart contract is now
Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 2

Critical 0

High 0

Medium 0

Low 2

Very Low 0

info@rdauditors.com Page No : 6



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The Grok Inu team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Overall, the code is almost commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 7



Documentation

We were given the Grok Inu code as a link:

https://bscscan.com/token/0xd08b9e557d1f64c8dd50a168453ea302a83e47fc

The hash of that file is mentioned in the table. As mentioned above, it's

commented on smart contract code, so anyone can quickly understand the

programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 8



AS-IS Overview

GrokInu.sol

File And Function Level Report

Contract: ERC20

Inherit: Context, IERC20, IERC20Metadata

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 name read Passed All Passed No Issue Passed

2 symbol read Passed All Passed No Issue Passed

3 decimals read Passed All Passed No Issue Passed

4 totalSupply read Passed All Passed No Issue Passed

5 balanceOf read Passed All Passed No Issue Passed

6 transfer write Passed All Passed No Issue Passed

7 allowance read Passed All Passed No Issue Passed

8 approve write Passed All Passed No Issue Passed

9 transferFrom write Passed All Passed No Issue Passed

10 IncreaseAllow
ance

write Passed All Passed No Issue Passed

11 decreaseAllow
ance

write Passed All Passed No Issue Passed

12 _transfer internal Passed All Passed No Issue Passed

13 _mint internal Passed All Passed No Issue Passed

14 _burn internal Passed All Passed No Issue Passed

info@rdauditors.com Page No : 9



15 _approve internal Passed All Passed No Issue Passed

16 _spendAllowa
nce

internal Passed All Passed No Issue Passed

17 _beforeTokenT
ransfer

internal Passed All Passed No Issue Passed

18 _afterTokentra
nsfer

internal Passed All Passed No Issue Passed

Contract: Ownable

Inherit: Context

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 Owner read Passed All Passed No Issue Passed

2 _CheckOwner internal Passed All Passed No Issue Passed

3 renounceOwn
ership

onlyOwner Passed All Passed No Issue Passed

4 transferOwner
ship

onlyOwner Passed All Passed No Issue Passed

5 _transferOwn
ership

Internal Passed All Passed No Issue Passed

Contract: DividendPayingToken

Inherit: Ownable, ERC20, DividendPayingTokenInterface,

ReentrancyGuard

Observation: Passed

Test Report: Passed

info@rdauditors.com Page No : 10



Sl. Function Type Observation Test Report Conclusion Score

1 distributeDivi
dends

onlyowner Passed All Passed No Issue Passed

2 withdrawDivi
dends

write Passed All Passed No Issue Passed

3 _withdrawDivi
dendOfUser

internal Passed All Passed No Issue Passed

4 dividendof read Passed All Passed No Issue Passed

5 withdrawable
DividendOf

read Passed All Passed No Issue Passed

6 withdrawDivi
dendOf

read Passed All Passed No Issue Passed

7 accumulative
DividendOf

read Passed All Passed No Issue Passed

8 _transfer internal Passed All Passed No Issue Passed

9 _mint internal Passed All Passed No Issue Passed

10 _burn internal Passed All Passed No Issue Passed

11 _setBalance internal Passed All Passed No Issue Passed

Contract: DividendTracker

Inherit: Ownable, ERC20, DividendPayingToken

Observation: Passed

Test Report: Passed

Sl. Function Type Observati
on

Test Report Conclusion Score

1 _transfer internal Passed All Passed No Issue Passed

2 withdrawDividen
d

read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



3 updateMinimum
TokenBalanceFor
Dividends

onlyOwner Passed All Passed No Issue Passed

4 updateMinimum
DividendForAuto
claim

onlyOwner Passed All Passed No Issue Passed

5 excludeFromDivi
dends

onlyOwner Passed All Passed No Issue Passed

6 updateClaimWait onlyOwner Passed All Passed No Issue Passed

7 SetLastProcessed
Index

onlyOwner Passed All Passed No Issue Passed

8 getLastProcessed
Index

read Passed All Passed No Issue Passed

9 getNumberOfTok
enHolders

read Passed All Passed No Issue Passed

10 getAccount read Passed All Passed No Issue Passed

11 getAccountIndex read Passed All Passed No Issue Passed

12 canAutoClaim read Passed All Passed No Issue Passed

13 setBalance onlyOwner Passed All Passed No Issue Passed

14 Process write Passed All Passed No Issue Passed

15 ProcessAccount onlyOwner Passed All Passed No Issue Passed

Contract: GrokInu

Inherit: Ownable, ERC20, ReentrancyGuard

Observation: Passed

Test Report: Passed

Sl. Function Type Observatio
n

Test Report Conclusion Score

1 isContract internal Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12



2 getRouterAddre
ss

read Passed All Passed No Issue Passed

3 ClaimStuckToke
ns

onlyOwner Passed All Passed No Issue Passed

4 SetMarketingW
allet1

onlyOwner Passed All Passed No Issue Passed

5 SetMarketingW
allet2

onlyOwner Passed All Passed No Issue Passed

6 SetMarketingW
allet3

onlyOwner Passed All Passed No Issue Passed

7 SetSwapTokens
AtAmount

onlyOwner Passed All Passed No Issue Passed

8 toggleSwapBac
k

onlyOwner Passed All Passed No Issue Passed

9 toggleAutoDistri
bute

onlyOwner Passed All Passed No Issue Passed

10 SetExcludeFrom
Fees

onlyOwner Passed All Passed No Issue Passed

11 isExcludedFrom
Fees

read Passed All Passed No Issue Passed

12 setAutomatedM
arketMakerPair

onlyOwner Passed All Passed No Issue Passed

13 isAutomatedMa
rketMakerPair

read Passed All Passed No Issue Passed

14 _transfer internal Passed All Passed No Issue Passed

15 ProcessReflectio
n

internal Passed All Passed No Issue Passed

16 SwapBack internal Passed All Passed No Issue Passed

17 SwapAndLiquify write Passed All Passed No Issue Passed

18 sendBNB internal Passed All Passed No Issue Passed

19 ManualSwapBa
ck

write Passed All Passed No Issue Passed

20 updateBuyFees onlyOwner Passed All Passed No Issue Passed

21 updateSellFees onlyOwner Passed All Passed No Issue Passed

info@rdauditors.com Page No : 13



22 updateTransferF
ees

onlyOwner Passed All Passed No Issue Passed

23 updatePercent
MarketingWalle
t

onlyOwner Passed All Passed No Issue Passed

24 UpdateDividend
Tracker

onlyOwner Passed All Passed No Issue Passed

25 UpdateGasForPr
ocessing

onlyOwner Passed All Passed No Issue Passed

26 UpdateMinimu
mBalanceOfDivi
dends

onlyOwner Passed All Passed No Issue Passed

27 getMinimumTo
kenBalanceFor
Dividends

read Passed All Passed No Issue Passed

28 updateMinimu
mDividendForA
utoClaim

onlyOwner Passed All Passed No Issue Passed

29 getMinimumDiv
idendForAutoCl
aim

read Passed All Passed No Issue Passed

30 updateClaimWa
it

onlyOwner Passed All Passed No Issue Passed

31 getClaimWait read Passed All Passed No Issue Passed

32 getTotalDividen
dsDistributed

read Passed All Passed No Issue Passed

33 withdrawableDi
videndOf

read Passed All Passed No Issue Passed

34 dividendTokenB
alanceOf

read Passed All Passed No Issue Passed

35 totalRewardsEar
ned

read Passed All Passed No Issue Passed

36 excludeFromDiv
idends

onlyOwner Passed All Passed No Issue Passed

37 getAccountDivi
dendsInfo

read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 14



38 getAccountDivi
dendsInfoAtInd
ex

read Passed All Passed No Issue Passed

39 ProcessDividen
dTracker

external Passed All Passed No Issue Passed

40 Claim onlyOwner Passed All Passed No Issue Passed

41 ClaimAddress onlyOwner Passed All Passed No Issue Passed

42 getlastProcesse
dIndex

read Passed All Passed No Issue Passed

43 setLastProcesse
dIndex

onlyOwner Passed All Passed No Issue Passed

44 getNumberOfDi
videndTokenHol
ders

read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 15



Code Flow Diagram - Grok Inu

More in-depth visuals of the below images are found in this url:

https://drive.google.com/file/d/1K0CKMthuVST4miShfxA-o9Jsk7FHDNLQ/view?usp=sharing

info@rdauditors.com Page No : 16

https://drive.google.com/file/d/1K0CKMthuVST4miShfxA-o9Jsk7FHDNLQ/view?usp=sharing


info@rdauditors.com Page No : 17

https://drive.google.com/file/d/1K0CKMthuVST4miShfxA-o9Jsk7FHDNLQ/view?usp=sharing


Interaction Diagram

info@rdauditors.com Page No : 18



Inheritance Diagram

info@rdauditors.com Page No : 19



Code Flow Diagram - Slither Results Log

info@rdauditors.com Page No : 20



info@rdauditors.com Page No : 21



info@rdauditors.com Page No : 22



info@rdauditors.com Page No : 23



Solidity Static Analysis

info@rdauditors.com Page No : 24



info@rdauditors.com Page No : 25



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 26



Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

1)This function requires modification to mitigate potential external reentrancy

vulnerabilities.

The suggested adjustment is as follows:

info@rdauditors.com Page No : 27



2) This function also requires modification to mitigate potential external

reentrancy vulnerabilities.

The suggested adjustment is the same as above.

Very Low:

No very low severity vulnerabilities were found.

Discussion

1) Division Precision: The line (amount).mul(magnitude) / totalSupply()

involves multiplication and division with potentially large numbers. To avoid

precision issues, it's recommended to perform multiplication first and then

divide. Additionally, using SafeMath for these calculations is advisable to

prevent overflow or underflow.

info@rdauditors.com Page No : 28



2)Checking for Validity: It's good that the function checks if totalSupply() is

greater than 0 before proceeding. You may also want to add an additional

check to ensure that the contract has sufficient funds (tokens) to distribute as

dividends.This ensures that the contract has enough tokens to cover the

specified dividend amount.

info@rdauditors.com Page No : 29



3) The _transfer function is designed to handle the internal logic of

transferring tokens within the contract. It calculates a correction factor based

on the amount of tokens transferred and adjusts the magnified dividends for

both the sender and the receiver. The require(false); statement should be

removed for the function to function as intended.

info@rdauditors.com Page No : 30



4. Overpowered owners: The contracts have many functions that can only be

called by the owners. Giving too many privileges to the owners via critical

functions might put the user's funds at risk if the owners are compromised or

if a rug-pulling attack takes place.

5. Hardcoded addresses: The contract was hardcoding addresses in the code.

This may represent that those parameters can never be changed or updated

unless it’s a proxy contract. It is recommended to go through the code to

knowmore about these hardcoded values and its use.

info@rdauditors.com Page No : 31



Conclusion

We were given a contract file and have used all possible tests based on the

given object. so it is ready for mainnet deployment. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

The security state of the reviewed contract is “Secured”.

info@rdauditors.com Page No : 32



Note For Contract Users

distributeDividends: This function allows the owner of the contract to

distribute dividends to token holders.

UpdateMinimumDividendForAutoClaim: This function provides a way for the

contract owner to adjust the minimum dividend amount required for an

automatic claim. Adjusting this threshold might be useful to ensure that only

significant dividends trigger an automatic claim, preventing unnecessary gas

costs for small dividend amounts.

ExcludeFromDividends: This function provides a way for the contract owner to

exclude specific accounts from receiving dividends, and it updates related

data structures

UpdateClaimWait: This is designed to update the claimWait variable, which

likely represents the time interval (in seconds) that users have to wait

between claims

SetLastProcessedIndex:This function allows the owner of the contract to

update the lastProcessedIndex variable to a specified value. The purpose and

significance of the lastProcessedIndex variable would depend on the broader

context of the smart contract.

SetBalance:This function allows the contract owner to set the balance of a

specified account. If the account is not excluded from dividends and its new

balance meets the minimum requirement, it updates the balance and token

holders map. If the new balance is below the minimum, it sets the balance to

zero and removes the account from the token holders map. Finally, it triggers

info@rdauditors.com Page No : 33



the processing of the account's dividends with the processAccount function.

The onlyOwner modifier ensures that only the contract owner can execute

this function.

ProcessAccount:This function allows the contract owner to process the

dividend claim for a specific account. It withdraws any available dividends for

the account, updates the last claim time, emits a claim event, and returns

true if dividends were claimed. If there were no dividends to claim, it returns

false.

ClaimStuckTokens: This function allows the contract owner to claim either

native tokens (Ether) or ERC-20 tokens that may have been mistakenly sent to

the contract. If the provided token address is the zero address, the function

transfers the contract's Ether balance to the owner. If the provided token

address is an ERC-20 token, the function transfers the entire balance of that

token to the owner. The onlyOwner modifier ensures that only the contract

owner can invoke this function.

SetMarketingWallet1: This function allows the contract owner to set the first

marketing wallet address (marketingWallet2). It performs similar checks as

the previous function to ensure that the new address is different from the

current one, not the zero address, and not a contract address.

SetMarketingWallet2: This function allows the contract owner to set the

second marketing wallet address (marketingWallet2). It performs similar

checks as the previous function to ensure that the new address is different

from the current one, not the zero address, and not a contract address.

info@rdauditors.com Page No : 34



SetMarketingWallet3: This function allows the contract owner to set the third

marketing wallet address (marketingWallet3). It performs checks to ensure

that the new address is different from the current one, not the zero address,

and not a contract address.

SetSwapTokensAtAmount: This function allows the contract owner to set a

specific threshold amount (swapTokensAtAmount) at which a swap operation

is triggered. It ensures that the amount is different from the current value and

meets a minimum requirement.

toggleSwapBack: This function allows the contract owner to toggle (enable or

disable) the "swap back" feature. It ensures that the status is only updated if it

is different from the current status.

toggleAutoDistribute: This function allows the contract owner to toggle

(enable or disable) the auto-distribution feature. It ensures that the status is

only updated if it is different from the current status.

SetExcludeFromFees: This function allows the contract owner to set or update

the fee exclusion status for a given account address. It ensures that the status

is only updated if it is different from the current status.

info@rdauditors.com Page No : 35



setAutomatedMarketMakerPair:This function allows the contract owner to set

or update the automated market maker pair status for a given pair address. It

ensures that the status is only updated if it is different from the current status.

UpdateBuyFees: This function allows the contract owner to update the buy

fees associated with liquidity, marketing, and reflection. It performs

validations to ensure that the total fees do not exceed a certain limit and that

at least one of the fees is different from the current values. If these conditions

are met, it updates the individual fee variables for buying and emits an event

to log the update

UpdateSellFees: This function allows the contract owner to update the sell

fees associated with liquidity, marketing, and reflection. It performs

validations to ensure that the total fees do not exceed a certain limit and that

at least one of the fees is different from the current values. If these conditions

are met, it updates the individual fee variables for selling and emits an event

to log the update.

UpdateTransferFees: This function allows the contract owner to update the

transfer fees associated with liquidity, marketing, and reflection. It performs

validations to ensure that the total fees do not exceed a certain limit and that

at least one of the fees is different from the current values. If these conditions

are met, it updates the individual fee variables and emits an event to log the

update.

info@rdauditors.com Page No : 36



UpdatePercentMarketingWallet: This function allows the contract owner to

update the percentage distribution for marketing wallets. It performs

validations to ensure that the total percentage is 100% and that at least one of

the percentages is different from the current values. If these conditions are

met, it updates the individual percentage variables and emits an event to log

the update. The ability to update these percentages can be useful for

adjusting the allocation of funds to different marketing wallets based on

changing requirements or strategies.

UpdateDividendTracker:This function allows the contract owner to update the

dividend tracker with a new contract address. It performs necessary

validations, creates a new instance of the dividend tracker, configures

exclusions, emits an event to log the update, and updates the variable if all

conditions are satisfied. The ability to update the dividend tracker is useful for

adapting to changes or improvements in dividend distribution logic.

UpdateGasForProcessing:The purpose of this function is to allow the owner to

dynamically adjust the amount of gas allocated for processing dividends.

Processing dividends can involve computations and interactions with other

contracts, and the gas allocation ensures that there is enough computational

resources to execute these tasks. Adjusting this value may be necessary

info@rdauditors.com Page No : 37



based on factors such as network conditions, gas prices, or contract

complexity.

UpdateMinimumBalanceOfDividends: The purpose of this function is to allow

the owner to dynamically adjust the minimum token balance required for an

address to be eligible to receive dividends. Dividends are typically distributed

proportionally based on the token balances of eligible addresses. Adjusting

the minimum token balance for dividends can impact the set of addresses

eligible to receive dividends.

UpdateMinimumDividendForAutoClaim:This function provides a mechanism

for the contract owner to update the minimum dividend amount required for

automatic claiming, allowing for dynamic adjustments to the auto-claim

threshold.

UpdateClaimWait:The purpose of this function is to allow the owner to

dynamically adjust the waiting period required between consecutive claims

of dividends. By updating the claimWait variable, the owner can control how

frequently users are allowed to claim their dividends.

excludeFromDividends: The excludeFromDividends function is designed to

exclude a specific address from receiving dividends.

ClaimAddress: The claimAddress function is a part of the contract's

owner-only functionality, allowing the contract owner to manually trigger

dividend distribution for a specified Ethereum address. It provides a means

for the owner to intervene and ensure that dividends are distributed to a

particular address on demand.

info@rdauditors.com Page No : 38



SetLastProcessedIndex:The purpose of this function is to provide the owner

with the ability to manually update the last processed index of the dividend

tracker. This index is likely used to keep track of which addresses have

received dividends, preventing duplicate distributions.

info@rdauditors.com Page No : 39



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 40



Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 41



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 42




