


Table of Contents

Disclaimer 2
Document 3
Introduction 6
Project Scope 7
Executive Summary 8
Project Overview 9
Code Quality 9
Documentation 10
Use of Dependencies 10
AS-IS Overview 11
Interaction Diagram 18
Inheritance Diagram 18
Code Flow Diagram - Slither Results Log 19
Audit Findings 24
Conclusion 25
Note For Contract Users 25
Our Methodology 28
Disclaimers 30

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of DGI
Game

Platform Ethereum/ Solidity

File DGIStaking.sol

MD5 hash
ddcd573f7939783f838791a440247126

SHA256 hash 52e5a40f69185bea6c3b44a1804e7163843e300355792cba30d7e3985
c663e96

File SafeMath.sol

MD5 hash d8601ab024d98063d1884414caa798c1

SHA256 hash 8213cd58437a8a6b5acb2a85358cd245f5ae0e44674af84c60a312b8b
86049d7

File SafeERC20.sol

MD5 hash 533fc0be719f87bef290bc6f6e3d7366

SHA256 hash 0f93551f327a6465365c72deff5a4a94c5d457bdd6484c9cf313a08bc4
dc8506

File ReentrancyGuard.sol

info@rdauditors.com Page No : 3



MD5 hash ba1ddba253c8d2d51b645e806d3b86b9

SHA256 hash 4b3264a4e65f23fe5e65141a9dcbad21e7bdce9e1d4de44cb49bf0b44
60caffc

File Ownable.sol

MD5 hash 580e34fed6b52adce60e3a64311fe1ba

SHA256 hash 96a3b09372173d7174fcb0080a97c0cd9abb51cd31e71ecd597d62e09
42cb7c4

File IERC20.sol

MD5 hash d41d8cd98f00b204e9800998ecf8427e

SHA256 hash e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b78
52b855

File draftERC20Permit.sol

MD5 hash 91ff4c7f62df1f5d8aa65a61b335ab45

SHA256 hash 831d97e6913d2d8f540aa0f2f659c0c003145bafd2243e480f31e473a6
046503

File Context.sol

MD5 hash c4b296fb9a98a645ca52cc72c3fbae06

info@rdauditors.com Page No : 4



SHA256 hash 6de5302543723d32c8eaf17becc4525936e16d9c4551455c93d306b9b
72c0799

File Address.sol

MD5 hash d41d8cd98f00b204e9800998ecf8427e

SHA256 hash e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b78
52b855

Date 12/02/2024

info@rdauditors.com Page No : 5



Introduction

RD Auditors (Consultant) were contracted by DGI Game (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

represents the findings of the security assessment of the customer’s smart

contract and its code review conducted between 6th - 12th February 2024.

This contract consists of nine files.

info@rdauditors.com Page No : 6



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 7



Executive Summary
According to the assessment, the customer’s solidity smart contract is now
Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 0

Critical 0

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 8



Project Overview

The DGI Staking Contract stands at the pinnacle of token staking innovation,

offering stakeholders unparalleled opportunities to strategically deploy their

DGI tokens and unlock substantial rewards over time. This comprises flexible

withdrawal options, sophisticated tracking systems, structured reward

distributions, ensuring precision predictability and efficiency in the staking

process. Additionally, incentivizing long-term commitment and fostering a

culture of sustained engagement within the ecosystem.

Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The DGI Game team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Overall, the code is almost commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 9



Documentation

We were given the DGI game code as a link

https://etherscan.io/address/0x0c5901Bb3dFb0947566e7D4517841991fBD6bD87#code

The hash of that file is mentioned in the table. As mentioned above, it's

commented on smart contract code, so anyone can quickly understand the

programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 10

https://etherscan.io/address/0x0c5901Bb3dFb0947566e7D4517841991fBD6bD87#code


AS-IS Overview

DGI Game.sol

File And Function Level Report

Contract: DGIStaking

Import: IERC20.sol, SafeERC20, ReentrancyGuard.sol, Ownable,

SafeMath

Inherit: ReentrancyGuard, Ownable

Observation: Passed

Test Report: Passed

Sl. Function Type Observa
tion

Test Report Conclusion Score

1 balanceOf read Passed All Passed No Issue Passed

2 lastTimeRewardAp
plicable

read Passed All Passed No Issue Passed

3 RewardPerToken read Passed All Passed No Issue Passed

earned read Passed All Passed No Issue Passed

4 getRewardForDura
tion

read Passed All Passed No Issue Passed

5 Stake write Passed All Passed No Issue Passed

6 withdraw write Passed All Passed No Issue Passed

7 getReward write Passed All Passed No Issue Passed

8 exit write Passed All Passed No Issue Passed

9 notifyRewardAmo
unt

onlyOwner Passed All Passed No Issue Passed

10 migrateStaking onlhOwner Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



11 recoverERC20 onlyOwner Passed All Passed No Issue Passed

12 SetRewardDuratin onlyOwner Passed All Passed No Issue Passed

Library: SafeMath

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 tryAdd internal Passed All Passed No Issue Passed

2 trySub internal Passed All Passed No Issue Passed

3 tryMul internal Passed All Passed No Issue Passed

4 tryDiv internal Passed All Passed No Issue Passed

5 tryMod internal Passed All Passed No Issue Passed

6 Add internal Passed All Passed No Issue Passed

7 Sub internal Passed All Passed No Issue Passed

8 mul internal Passed All Passed No Issue Passed

9 div internal Passed All Passed No Issue Passed

10 mod internal Passed All Passed No Issue Passed

11 sub internal Passed All Passed No Issue Passed

12 div internal Passed All Passed No Issue Passed

13 mod internal Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12



Library: SafeERC20

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 SafeTransfer internal Passed All Passed No Issue Passed

2 SafeTransferFr
om

internal Passed All Passed No Issue Passed

3 SafeApprove internal Passed All Passed No Issue Passed

4 SafeIncreaseA
llowance

internal Passed All Passed No Issue Passed

5 SafeDecrease
Allowance

internal Passed All Passed No Issue Passed

6 SafePermit internal Passed All Passed No Issue Passed

7 _CallOptional
Return

write Passed All Passed No Issue Passed

Abstract: ReentrancyGuard

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 _nonReentran
tBefore

write Passed All Passed No Issue Passed

2 _nonReentran
tAfter

write Passed All Passed No Issue Passed

info@rdauditors.com Page No : 13



Abstract: Ownable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 Owner read Passed All Passed No Issue Passed

2 _checkOwner internal Passed All Passed No Issue Passed

3 renounceOwn
ership

onlyOwner Passed All Passed No Issue Passed

4 transferOwne
rship

onlyOwner Passed All Passed No Issue Passed

5 _transferOwn
ership

internal Passed All Passed No Issue Passed

Interface: IERC20

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 totalSupply read Passed All Passed No Issue Passed

2 balanceOf read Passed All Passed No Issue Passed

3 transfer external Passed All Passed No Issue Passed

4 allowance external Passed All Passed No Issue Passed

5 approve external Passed All Passed No Issue Passed

6 transferFrom external Passed All Passed No Issue Passed

info@rdauditors.com Page No : 14



Interface: ERC20Permit

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 Permit read Passed All Passed No Issue Passed

2 nonces read Passed All Passed No Issue Passed

3 DOMAIN_SEP
ARATOR

read Passed All Passed No Issue Passed

Abstract: context

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 _msgSender internal Passed All Passed No Issue Passed

2 _msgData internal Passed All Passed No Issue Passed

library: Address

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 isContract internal Passed All Passed No Issue Passed

2 SendValue internal Passed All Passed No Issue Passed

3 functionCall internal Passed All Passed No Issue Passed

4 functionCall internal Passed All Passed No Issue Passed

info@rdauditors.com Page No : 15



5 functionCallWi
thValue

internal Passed All Passed No Issue Passed

6 functionCallWi
thValue

internal Passed All Passed No Issue Passed

7 functionStatic
Call

internal Passed All Passed No Issue Passed

8 functionStatic
Call

internal Passed All Passed No Issue Passed

9 functionDeleg
ateCall

internal Passed All Passed No Issue Passed

10 functionDeleg
ateCall

internal Passed All Passed No Issue Passed

11 VerifyCallResul
tFromTarget

internal Passed All Passed No Issue Passed

12 VerifyCallResul
t

internal Passed All Passed No Issue Passed

13 _revert read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 16



Code Flow Diagram - DGI Game

info@rdauditors.com Page No : 17



Interaction Diagram

Inheritance Diagram

info@rdauditors.com Page No : 18



Code Flow Diagram - Slither Results Log

info@rdauditors.com Page No : 19



info@rdauditors.com Page No : 20



Solidity Static Analysis

info@rdauditors.com Page No : 21



info@rdauditors.com Page No : 22



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 23



Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

Discussion

1) Advised to fix compiler version 0.8.0 instead of ^0.8.0

2) Double check hard coded values before going to production

info@rdauditors.com Page No : 24



Conclusion

We were given a contract file and have used all possible tests based on the

given object. so it is ready for mainnet deployment. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

The security state of the reviewed contract is “Secured”.

info@rdauditors.com Page No : 25



Note For Contract Users

The owner wields complete authority over the reward rate, possesses the

capability to reclaim assets into their personal custody, and exercises various

other pivotal administrative functions with absolute control.

MigrateStaking: This Solidity function, migrateStaking, serves the purpose of

allowing the contract owner to migrate staking for a user within the smart

contract. It facilitates the addition of a specified amount to a user's staked

balance while also updating the total supply accordingly. By verifying that the

amount being staked is greater than 0, it ensures the integrity of the staking

process. Additionally, it emits a Staked event to provide transparency

regarding the staking activity occurring within the contract. The function is

designed to be called exclusively by the contract owner, as indicated by the

onlyOwner modifier, thereby restricting access to authorized entities for the

migration of staking.

NotifyRewardAmount: Only the contract owner can call this function to notify

the contract of the amount of rewards to be distributed.

RecoverERC20: Allows the owner to recover ERC20 tokens accidentally sent to

the contract, excluding the staking token.

SetRecoveredDuration: This function provides a way for the owner of the

contract to adjust the duration of the rewards period, ensuring that the

change can only occur when the previous rewards period has completed.

TransferOwnership: The transferOwnership function provides a way for the

current owner of the contract to transfer ownership to a new address, as long

info@rdauditors.com Page No : 26



as that address is not the zero address. This function is crucial for transferring

control of the contract to another party,

RenounceOwnership: The renounceOwnership function allows the current

owner of the contract to voluntarily renounce their ownership privileges,

effectively making the contract ownerless. Once ownership is renounced, it

cannot be regained, providing a mechanism for decentralization and

preventing any single entity from having control over the contract.

info@rdauditors.com Page No : 27



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 28



Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 29



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 30




