


Table of Contents

Disclaimer 2
Document 3
Introduction 4
Project Scope 5
Executive Summary 6
Code Quality 6
Documentation 8
Use of Dependencies 8
AS-IS Overview 9
Interaction Diagram 14
Inheritance Diagram 14
Code Flow Diagram - Slither Results Log 15
Audit Findings 18
Conclusion 19
Note For Contract Users 19
Our Methodology 23
Disclaimers 25

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of Pi

Platform Base/ Solidity

File Storage.sol

MD5 hash 640273ac8c751749eb978c0bd31e3cf5

SHA256 hash e52286a06ec35dd98b6ce268964be37570a0aad5ce0ac0f2be3b2266
104d41c4

File EarlyStaking.sol

MD5 hash 5951470e7d370c4118bb7ab023ed478b

SHA256 hash e52286a06ec35dd98b6ce268964be37570a0aad5ce0ac0f2be3b22
66104d41c4

Date 4/02/2024

info@rdauditors.com Page No : 3



Introduction

RD Auditors (Consultant) were contracted by Project Pi (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

represents the findings of the security assessment of the customer’s smart

contract and its code review conducted between 29th January - 4th February

2024.

This contract consists of two files.

info@rdauditors.com Page No : 4



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 5



Executive Summary
According to the assessment, the customer’s solidity smart contract is now
Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 0

Critical 0

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 6



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The Project Pi team has provided scenario and unit test scripts, which would

help to determine the integrity of the code in an automated way.

Overall, the code is almost commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 7



Documentation

We were given the Project Pi code as a solidity file.

The hash of that file is mentioned in the table. As mentioned above, it's

commented on smart contract code, so anyone can quickly understand the

programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 8



AS-IS Overview

Pi.sol

File And Function Level Report

Contract: Storage

Observation: Passed

Test Report: Passed

Sl. Function Type Observa
tion

Test Report Conclusion Score

1 setGuardian write Passed All Passed No Issue Passed

2 getGuardian read Passed All Passed No Issue Passed

3 ConfirmGuardian write Passed All Passed No Issue Passed

registerNetworkC
ontract

write Passed All Passed No Issue Passed

4 isNetworkContra
ctRegistered

read Passed All Passed No Issue Passed

5 getAddress read Passed All Passed No Issue Passed

6 getBool read Passed All Passed No Issue Passed

7 getBytes read Passed All Passed No Issue Passed

8 getBytes32 read Passed All Passed No Issue Passed

9 getInt read Passed All Passed No Issue Passed

10 getString read Passed All Passed No Issue Passed

11 getUint read Passed All Passed No Issue Passed

12 SetAddress onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

info@rdauditors.com Page No : 9



13 SetBool onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

14 SetBytes onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

15 SetBytes32 onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

16 SetInt onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

17 SetString onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

18 setUint onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

19 DeleteAddress onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

20 deleteBool onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

21 deleteBytes onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

22 deleteBytes32 onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

info@rdauditors.com Page No : 10



23 deleteInt onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

24 deleteString onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

25 deleteUint onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

26 addUint onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

27 subUint onlyGuardia
nOrRegister
edNetworkC
ontract

Passed All Passed No Issue Passed

Contract: EarlyStaking2

Inherit: Base, ReentrancyGuard

Import: Base.sol, storage.sol, TokenPPy

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 rewardPerToken read Passed All Passed No Issue Passed

2 lastRewardTimeS
tamp

read Passed All Passed No Issue Passed

3 rewardEarned read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



4 UpdateRewards internal Passed All Passed No Issue Passed

5 Stake write Passed All Passed No Issue Passed

6 UnStake write Passed All Passed No Issue Passed

7 ClaimRewards write Passed All Passed No Issue Passed

8 requiredEarlySta
ker

read Passed All Passed No Issue Passed

9 getStakerCount read Passed All Passed No Issue Passed

10 getPLSStake read Passed All Passed No Issue Passed

11 getTotalPLSStak
e

read Passed All Passed No Issue Passed

12 getIndexOf read Passed All Passed No Issue Passed

13 getEarlyStaker read Passed All Passed No Issue Passed

14 getEarlyStakers read Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12



Code Flow Diagram - Pi
Please follow the below link to see a larger view of the below image:

https://drive.google.com/file/d/17nG-Fl6empJqumtmMPebeJkdmRyRduwV/view?usp

=sharing

info@rdauditors.com Page No : 13



Interaction Diagram

Inheritance Diagram

info@rdauditors.com Page No : 14



Code Flow Diagram - Slither Results Log

info@rdauditors.com Page No : 15



Solidity Static Analysis

info@rdauditors.com Page No : 16



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 17



Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

Discussion

Hard coded values must be double checked before going to production.

info@rdauditors.com Page No : 18



Conclusion

We were given a contract file and have used all possible tests based on the

given object. so it is ready for mainnet deployment. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

The security state of the reviewed contract is “Secured”.

info@rdauditors.com Page No : 19



Note For Contract Users

SetAddress: This function allows the guardian or a registered network

contract to set an address value in the addressStorage mapping, subject to

the access control provided by the

onlyGuardianOrRegisteredNetworkContract modifier.

SetBool: This function allows the guardian or a registered network contract to

set a boolean value in the booleanStorage mapping, subject to the access

control provided by the onlyGuardianOrRegisteredNetworkContract modifier.

SetBytes: This function allows the guardian or a registered network contract

to set a bytes value in the bytesStorage mapping, subject to the access

control provided by the onlyGuardianOrRegisteredNetworkContract modifier.

This is useful for storing arbitrary binary data in the contract's storage.

SetBytes32: This function allows the guardian or a registered network contract

to set a bytes32 value in the bytes32 Storage mapping, subject to the access

control provided by the onlyGuardianOrRegisteredNetworkContract modifier.

This can be useful for storing fixed-size binary data or identifiers in the

contract's storage.

SetInt: This function allows the guardian or a registered network contract to

set an int256 value in the intStorage mapping, subject to the access control

provided by the onlyGuardianOrRegisteredNetworkContract modifier.

SetString: This function allows the guardian or a registered network contract

to set a string value in the stringStorage mapping, subject to the access

info@rdauditors.com Page No : 20



control provided by the onlyGuardianOrRegisteredNetworkContract modifier.

This is useful for storing string data in the contract's storage.

SetInt: This function allows the guardian or a registered network contract to

set an int256 value in the intStorage mapping, subject to the access control

provided by the onlyGuardianOrRegisteredNetworkContract modifier. This

function is useful for storing integer values in the contract's storage.

DeleteAddress: This function allows the guardian or a registered network

contract to delete an entry from the addressStorage mapping, subject to the

access control provided by the onlyGuardianOrRegisteredNetworkContract

modifier. This can be useful for managing the data stored in the contract and

cleaning up unnecessary entries.

DeleteBool: This function allows the guardian or a registered network

contract to delete an entry from the booleanStorage mapping, subject to the

access control provided by the onlyGuardianOrRegisteredNetworkContract

modifier. This can be useful for managing the data stored in the contract and

cleaning up unnecessary entries.

DeleteBytes: This function allows the guardian or a registered network

contract to delete an entry from the addressStorage mapping, subject to the

access control provided by the onlyGuardianOrRegisteredNetworkContract

modifier. This can be useful for managing the data stored in the contract and

cleaning up unnecessary entries.

DeleteBytes32: This function allows the guardian or a registered network

contract to delete an entry from the bytes32 Storage mapping, subject to the

access control provided by the onlyGuardianOrRegisteredNetworkContract

info@rdauditors.com Page No : 21



modifier. This can be useful for managing the data stored in the contract and

cleaning up unnecessary entries.

AddUint: This function allows the guardian or a registered network contract to

add a specified amount to the uint256 value stored in the uintStorage

mapping at a given key, subject to the access control provided by the

onlyGuardianOrRegisteredNetworkContract modifier. This is useful for

updating and modifying stored integer values in the contract's storage.

SubUint: This function allows the guardian or a registered network contract to

subtract a specified amount from the uint256 value stored in the uintStorage

mapping at a given key, subject to the access control provided by the

onlyGuardianOrRegisteredNetworkContract modifier. This is useful for

updating and modifying stored integer values in the contract's storage.

info@rdauditors.com Page No : 22



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

info@rdauditors.com Page No : 23



Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 24



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 25




