


Table of Contents

Disclaimer 2
Document 3
Introduction 5
Project Scope 6
Executive Summary 7
Code Quality 7
Documentation 9
Use of Dependencies 9
AS-IS Overview 10
UML Diagram - Citizens 15
Inheritance Diagram - Citizens 16
Code Flow Diagram - Slither Results Log 17
Audit Findings 23
Conclusion 24
Our Methodology 25
Disclaimers 28

info@rdauditors.com Page No : 1



Disclaimer

This document may contain confidential information about its systems and

intellectual property of the customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the

customer or it can be disclosed publicly after all vulnerabilities are fixed -

upon the decision of the customer.

info@rdauditors.com Page No : 2



Document

Name Smart Contract Code Review and Security Analysis Report of Pulse
Wars

Platform Ethereum/ Solidity

File 1 Citizens.sol

MD5 hash 5dad15a78df34f51b293c92768ef1e64

SHA256 hash 88ef307597f51a00116e85dde068fe8c31a456fae1620379b0471d96a75
10d44

File 2 PulseWars.sol

MD5 hash a068fa642a82ef08b6f6efab87895aac

SHA256 hash 109ae7aad0e674b95e52611b8d17380e82ffb62fab967094ca93fb0ac8
9dbf51

File 3 RandomNumber.sol

MD5 hash 1bc4e639c6390bd07324540cddfe58d0

info@rdauditors.com Page No : 3



SHA256 hash 50ffc18a9a4cc09a19b8fcb7a0254c4ebdbf24f253ee3bda47e462ddf4
638b4e

Date 22/03/2024

info@rdauditors.com Page No : 4



Introduction

RD Auditors (Consultant) were contracted by Pulse Wars (Customer) to

conduct a Smart Contract Code Review and Security Analysis. This report

represents the findings of the security assessment of the customer’s smart

contract and its code review conducted between 16th - 22nd March 2024.

This contract consists of three files.

info@rdauditors.com Page No : 5



Project Scope

The scope of the project is a smart contract. We have scanned this smart

contract for commonly known and more specific vulnerabilities, below are

those considered (the full list includes but is not limited to):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

info@rdauditors.com Page No : 6



Executive Summary
According to the assessment, the customer’s solidity smart contract is now
Well-Secured.

Automated checks are with smartDec, Mythril, Slither and remix IDE. All

issues were performed by our team, which included the analysis of code

functionality, the manual audit found during automated analysis were

manually reviewed and applicable vulnerabilities are presented in the audit

overview section. The general overview is presented in the AS-IS section and

all issues found are located in the audit overview section.

We found the following;

Total Issues 0

Critical 0

High 0

Medium 0

Low 0

Very Low 0

info@rdauditors.com Page No : 7



Code Quality

The libraries within this smart contract are part of a logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned to a specific address

and its properties/methods can be reused many times by other contracts.

The Pulse Wars team has provided scenario and unit test scripts, which would

help to determine the integrity of the code in an automated way.

Overall, the code is almost commented. Commenting can provide rich

documentation for functions, return variables and more. Use of the Ethereum

Natural Language Specification Format (NatSpec) for commenting is

recommended.

info@rdauditors.com Page No : 8



Documentation

We were given the Pulse Wars code as a Github link:

https://github.com/srv-smn/Pulse-Wars/tree/dev

The hash of that file is mentioned in the table. As mentioned above, it's

commented on smart contract code, so anyone can quickly understand the

programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provides a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies

As per our observation, the libraries are used in this smart contract

infrastructure. Those were based on well known industry standard open

source projects and even core code blocks that are written well and

systematically.

info@rdauditors.com Page No : 9

https://github.com/srv-smn/Pulse-Wars/tree/dev


AS-IS Overview

Citizens.sol

File And Function Level Report

Contract: Citizens

Inherit: ICitizens, ERC721, ERC721Enumerable, ReentrancyGuard,

Authorizable, ERC2981, Pausable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 changeBaseU
RI

external Passed All Passed No Issue Passed

2 setContractU
RI

external Passed All Passed No Issue Passed

3 setMaxSupply public Passed All Passed No Issue Passed

4 updateThresh
old

public Passed All Passed No Issue Passed

5 updateMintin
gFee

public Passed All Passed No Issue Passed

6 updateTreasur
yAddress

public Passed All Passed No Issue Passed

7 updateBaseR
oyalty

external Passed All Passed No Issue Passed

8 removeBaseR
oyalty

external Passed All Passed No Issue Passed

info@rdauditors.com Page No : 10



9 updateTokenR
oyalty

external Passed All Passed No Issue Passed

10 removeToken
Royalty

external Passed All Passed No Issue Passed

11 updateCoins public Passed All Passed No Issue Passed

12 addBadge public Passed All Passed No Issue Passed

13 updateCatego
rySupply

public Passed All Passed No Issue Passed

14 modifyPartne
rStatus

public Passed All Passed No Issue Passed

15 pauseContrac
t

public Passed All Passed No Issue Passed

16 unpauseContr
act

public Passed All Passed No Issue Passed

17 join public Passed All Passed No Issue Passed

18 isWhitelistedP
artner

public Passed All Passed No Issue Passed

19 getCitizenDet
ails

public Passed All Passed No Issue Passed

20 getCategoryM
axSupply

external Passed All Passed No Issue Passed

21 getMaxSupply external Passed All Passed No Issue Passed

22 getNFTDetails public Passed All Passed No Issue Passed

23 getMintingFe
es

public Passed All Passed No Issue Passed

24 getTotalBadg
esEarned

public Passed All Passed No Issue Passed

25 getAllBadges public Passed All Passed No Issue Passed

26 getAllCoins external Passed All Passed No Issue Passed

27 _beforeTokenT
ransfer

internal Passed All Passed No Issue Passed

info@rdauditors.com Page No : 11



28 _burn internal Passed All Passed No Issue Passed

29 tokenURI public Passed All Passed No Issue Passed

PulseWars.sol

Contract: PulseWars

Inherit: IPulseWars, ERC721, ERC721Enumerable, ReentrancyGuard,

Authorizable, ERC2981, Pausable

Observation: Passed

Test Report: Passed

Sl. Function Type Observation Test Report Conclusion Score

1 changeBaseU
RI

external Passed All Passed No Issue Passed

2 setContractU
RI

external Passed All Passed No Issue Passed

3 setMaxSupply public Passed All Passed No Issue Passed

4 updateThresh
old

public Passed All Passed No Issue Passed

5 updateRando
mNumberAd
dress

public Passed All Passed No Issue Passed

6 updateMintin
gFee

public Passed All Passed No Issue Passed

7 updateTreasur
yAddress

public Passed All Passed No Issue Passed

info@rdauditors.com Page No : 12



8 updateRoyalty external Passed All Passed No Issue Passed

9 updateCoins public Passed All Passed No Issue Passed

10 addBadge public Passed All Passed No Issue Passed

11 updateCatego
rySupply

public Passed All Passed No Issue Passed

12 pauseContrac
t

public Passed All Passed No Issue Passed

13 unpauseContr
act

public Passed All Passed No Issue Passed

14 getRandomSe
lection

internal Passed All Passed No Issue Passed

15 mintNFTs public Passed All Passed No Issue Passed

16 getCategoryM
axSupply

external Passed All Passed No Issue Passed

17 getMaxSupply external Passed All Passed No Issue Passed

18 getNFTDetails public Passed All Passed No Issue Passed

19 getMintingFe
es

public Passed All Passed No Issue Passed

20 getTotalBadg
esEarned

public Passed All Passed No Issue Passed

21 getAllBadges public Passed All Passed No Issue Passed

22 getAllCoins external Passed All Passed No Issue Passed

23 _baseURI internal Passed All Passed No Issue Passed

24 _beforeTokenT
ransfer

internal Passed All Passed No Issue Passed

25 _burn internal Passed All Passed No Issue Passed

26 tokenURI public Passed All Passed No Issue Passed

info@rdauditors.com Page No : 13



Code Flow Diagram - Citizens

Please click on the below link to view the image:

https://drive.google.com/file/d/158IA2QejOlEPtNrzRStvG6CiVIWeESQF/view?usp=drive_link

info@rdauditors.com Page No : 14

https://drive.google.com/file/d/158IA2QejOlEPtNrzRStvG6CiVIWeESQF/view?usp=drive_link


UML Diagram - Citizens

info@rdauditors.com Page No : 15



Inheritance Diagram - Citizens

info@rdauditors.com Page No : 16



Code Flow Diagram - Slither Results Log

Citizens.sol

info@rdauditors.com Page No : 17



info@rdauditors.com Page No : 18



info@rdauditors.com Page No : 19



Solidity Static Analysis
Citizens.sol

info@rdauditors.com Page No : 20



info@rdauditors.com Page No : 21



Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can
lead to lost tokens etc.

High High level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g. public
access to crucial functions.

Medium Medium level vulnerabilities are important to fix; however, they
cannot lead to lost tokens.

Low Low level vulnerabilities are most related to outdated, unused etc.
These code snippets cannot have a significant impact on execution.

Lowest
Code Style/
Best Practice

Lowest level vulnerabilities, code style violations and information
statements cannot affect smart contract execution and can be
ignored.

info@rdauditors.com Page No : 22



Audit Findings

Critical:

No critical severity vulnerabilities were found.

High:

No high severity vulnerabilities were found.

Medium:

No medium severity vulnerabilities were found.

Low:

No low severity vulnerabilities were found.

Very Low:

No very low severity vulnerabilities were found.

Discussion

info@rdauditors.com Page No : 23



Conclusion

We were given a contract file and have used all possible tests based on the

given object. so it is ready for mainnet deployment. We have used all the

latest static tools and manual observations to cover maximum possible test

cases to scan everything.

The security state of the reviewed contract is “Well-Secured”.

info@rdauditors.com Page No : 24



Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review

In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis

Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web

site to get a high level understanding of what functionality the software

under review provides. We then meet with the developers to gain an

appreciation of their vision of the software. We install and use the relevant

software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design

info@rdauditors.com Page No : 25



documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally

investigate details other than the implementation.

Documenting Results

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and

impact of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyse the feasibility of an

attack in a live system.

info@rdauditors.com Page No : 26



Suggested Solutions

We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinised by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

info@rdauditors.com Page No : 27



Disclaimers

RD Auditors Disclaimer

The smart contracts given for audit have been analysed in accordance with

the best industry practices at the date of this report, in relation to:

cybersecurity vulnerabilities and issues in smart contract source code, the

details of which are disclosed in this report, (Source Code); the Source Code

compilation, deployment and functionality (performing the intended

functions).

Because the total number of test cases are unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be

considered as a sufficient assessment regarding the utility and safety of the

code, bugfree status or any other statements of the contract. While we have

done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we

recommend proceeding with several independent audits and a public bug

bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain. The platform,

its programming language, and other software related to the smart contract

can have their own vulnerabilities that can lead to hacks. Thus, the audit can’t

guarantee explicit security of the audited smart contracts.

info@rdauditors.com Page No : 28




